skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thomson Scattering Measurements of Plasma Dynamics

Technical Report ·
DOI:https://doi.org/10.2172/894342· OSTI ID:894342

The authors propose to investigate the dynamics of plasmas in the warm dense matter (WDM) regime on ultra-short time scales. Accessible plasma conditions are in the density range of n = 10{sup 20} - 10{sup 23} cm{sup -3} and at moderate temperatures of T = 1 - 20 eV. These plasmas are of importance for laboratory astrophysics, high energy density science and inertial confinement fusion. They are characterized by a coupling parameter of {Lambda} {approx}> 1, where electromagnetic interactions are of the same order as the kinetic energy. The high density of the plasma makes it opaque to radiation in the visible range and, as a consequence, UV up to x-ray radiation can be used to probe such systems. Therefore a wide range in the temperature-density plane of WDM is presently unexplored and only the VUV-FEL opens for the first time the opportunity for its detailed investigation. In equilibrium, the macroscopic state of the plasma is completely characterized by its density and temperature. In pump-probe experiments however, the plasma is initially in a nonequilibrium state and relaxes towards equilibrium within the relaxation time {tau}{sub R}. For t > {tau}{sub R}, the plasma is in an equilibrium state and expands hydrodynamically on a time scale {tau}{sub H}. The proposed experiment measures the time-resolved Thomson scattering signal with the VUV-FEL radiation characterizing the plasma in equilibrium and nonequilibrium states. Both regimes are extremely interesting and will provide new insight into the following phenomena: (1) details of nonequilibrium correlations, (2) relaxation phenomena, (3) hydrodynamic expansion, (4) recombination kinetics. The time-resolved Thomson scattering signal is obtained in a pump-probe experiment by varying the delay between pump and probe. The final stage of the relaxation process (t {approx} {tau}{sub R}) is of special interest since the plasma components (electrons and ion species) can be assumed to be in quasi-equilibrium. This allows for accurate measurements of the electron temperature using the detailed balance relation. For times t {approx}< {tau}{sub R} the scattering spectrum provides also the plasmon damping in nonequilibrium from which information on the formation and decay of collective excitations at short time scales can be obtained. At large time scales (t {approx}> {tau}{sub H}) the hydrodynamic expansion of the plasma sets in. Detailed information on the evolution of the plasma in this regime is available from sophisticated hydrodynamic computer simulations which can be tested with the proposed measurements. With the decreasing plasma density due to the expansion, recombination processes become important and need to be considered as well.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
894342
Report Number(s):
UCRL-TR-220527; TRN: US0700150
Country of Publication:
United States
Language:
English