skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SCENARIOS EVALUATION TOOL FOR CHLORINATED SOLVENT MNA

Technical Report ·
DOI:https://doi.org/10.2172/891994· OSTI ID:891994

Over the past three decades, much progress has been made in the remediation of chlorinated solvents from the subsurface. Yet these pervasive contaminants continue to present a significant challenge to the U.S. Department of Energy (DOE), other federal agencies, and other public and private organizations. The physical and chemical properties of chlorinated solvents make it difficult to rapidly reach the low concentrations typically set as regulatory limits. These technical challenges often result in high costs and long remediation time frames. In 2003, the DOE through the Office of Environmental Management funded a science-based technical project that uses the U.S. Environmental Protection Agency's technical protocol (EPA, 1998) and directives (EPA, 1999) on Monitored Natural Attenuation (MNA) as the foundation on which to introduce supporting concepts and new scientific developments that will support remediation of chlorinated solvents based on natural attenuation processes. This project supports the direction in which many site owners want to move to complete the remediation of their site(s), that being to complete the active treatment portion of the remedial effort and transition into MNA. The overarching objective of the effort was to examine environmental remedies that are based on natural processes--remedies such as Monitored Natural Attenuation (MNA) or Enhanced Attenuation (EA). The research program did identify several specific opportunities for advances based on: (1) mass balance as the central framework for attenuation based remedies, (2) scientific advancements and achievements during the past ten years, (3) regulatory and policy development and real-world experience using MNA, and (4) exploration of various ideas for integrating attenuation remedies into a systematic set of ''combined remedies'' for contaminated sites. These opportunities are summarized herein and are addressed in more detail in referenced project documents and journal articles, as well as in the technical and regulatory documents being developed within the ITRC. Three topic areas were identified for development during this project. These areas are: mass balance, Enhanced Attenuation (EA), and new characterization and monitoring tools and approaches to support MNA and EA. Each of these topics is documented in stand alone reports, WSRC-STI-2006-00082, WSRC-STI-2006-00083, and WSRC-STI-2006-00084, respectively. In brief, the mass balance efforts are examining methods and tools to allow a site to be evaluated in terms of a system where the inputs and processes within the system are compared to the outputs from the system, as well as understanding what attenuation processes may be occurring and how likely they are to occur within a system. Enhanced Attenuation is a new concept that is a transition step between primary treatments and MNA, when the natural attenuation processes are not sufficient to allow direct transition from the primary treatment to MNA. EA technologies are designed to either boost the level of the natural attenuation processes or decrease the loading of contaminants to the system for a period of time sufficient to allow the remedial goals to be met over the long-term. For characterization and monitoring, a phased approach based on documenting the site specific mass balance was developed. Tools and techniques to support the approach included direct measures of the biological processes and various tools to support cost-effective long-term monitoring of systems where the natural attenuation processes are the main treatment remedies. The effort revealed opportunities for integrating attenuation mechanisms into a systematic set of ''combined remedies'' for contaminated sites.

Research Organization:
Savannah River Site (SRS), Aiken, SC (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
DE-AC09-96SR18500
OSTI ID:
891994
Report Number(s):
WSRC-STI-2006-00096; TRN: US200622%%405
Country of Publication:
United States
Language:
English