skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Error bounds from extra precise iterative refinement

Journal Article · · ACM Transactions on Mathematical Software
OSTI ID:891198

We present the design and testing of an algorithm for iterative refinement of the solution of linear equations, where the residual is computed with extra precision. This algorithm was originally proposed in the 1960s [6, 22] as a means to compute very accurate solutions to all but the most ill-conditioned linear systems of equations. However two obstacles have until now prevented its adoption in standard subroutine libraries like LAPACK: (1) There was no standard way to access the higher precision arithmetic needed to compute residuals, and (2) it was unclear how to compute a reliable error bound for the computed solution. The completion of the new BLAS Technical Forum Standard [5] has recently removed the first obstacle. To overcome the second obstacle, we show how a single application of iterative refinement can be used to compute an error bound in any norm at small cost, and use this to compute both an error bound in the usual infinity norm, and a componentwise relative error bound. We report extensive test results on over 6.2 million matrices of dimension 5, 10, 100, and 1000. As long as a normwise (resp. componentwise) condition number computed by the algorithm is less than 1/max{l_brace}10,{radical}n{r_brace} {var_epsilon}{sub w}, the computed normwise (resp. componentwise) error bound is at most 2 max{l_brace}10,{radical}n{r_brace} {center_dot} {var_epsilon}{sub w}, and indeed bounds the true error. Here, n is the matrix dimension and w is single precision roundoff error. For worse conditioned problems, we get similarly small correct error bounds in over 89.4% of cases.

Research Organization:
COLLABORATION - University of CaliforniaBerkeley
DOE Contract Number:
DE-AC02-05CH11231
OSTI ID:
891198
Report Number(s):
LBNL-56965; R&D Project: KS1210; BnR: KJ0101010; TRN: US200621%%661
Journal Information:
ACM Transactions on Mathematical Software, Vol. 32, Issue 2; Related Information: Journal Publication Date: 06/2006
Country of Publication:
United States
Language:
English