skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: COLD TEST LOOP INTEGRATED TEST LOOP RESULTS

Technical Report ·
DOI:https://doi.org/10.2172/885846· OSTI ID:885846

A testing facility (Cold Test Loop) was constructed and operated to demonstrate the efficacy of the Accelerated Waste Retrieval (AWR) Project's planned sluicing approach to the remediation of Silos 1 and 2 at the Fernald Environmental Management Project near Cincinnati, Ohio. The two silos contain almost 10,000 tons of radium-bearing low-level waste, which consists primarily of solids of raffinates from processing performed on ores from the Democratic Republic of Congo (commonly referred to as ''Belgium Congo ores'') for the recovery of uranium. These silos are 80 ft in diameter, 36 ft high to the center of the dome, and 26.75 ft to the top of the vertical side walls. The test facility contained two test systems, each designed for a specific purpose. The first system, the Integrated Test Loop (ITL), a near-full-scale plant including the actual equipment to be installed at the Fernald Site, was designed to demonstrate the sluicing operation and confirm the selection of a slurry pump, the optimal sluicing nozzle operation, and the preliminary design material balance. The second system, the Component Test Loop (CTL), was designed to evaluate many of the key individual components of the waste retrieval system over an extended run. The major results of the initial testing performed during July and August 2002 confirmed that the AWR approach to sluicing was feasible. The ITL testing confirmed the following: (1) The selected slurry pump (Hazleton 3-20 type SHW) performed well and is suitable for AWR application. However, the pump's motor should be upgraded to a 200-hp model and be driven by a 150-hp variable-frequency drive (VFD). A 200-hp VFD is not much more expensive and would allow the pump to operate at full speed. (2) The best nozzle performance was achieved by using 15/16-in. nozzles operated alternately. This configuration appeared to most effectively mine the surrogate. (3) The Solartron densitometer, which was tested as an alternative mass flow measurement device, did not operate effectively. Consequently, it is not suitable for application to the AWR process. (4) Initially, the spray ring (operated at approximately 2300 psi) and the nozzles provided by the pump vendor did not perform acceptably. The nozzles were replaced with a more robust model, and the performance was then acceptable. (5) The average solids concentration achieved in the slurry before Bentogrout addition was approximately 16% by weight. The solids concentration of the slurry after Bentogrout addition ranged from 26% to approximately 40%. The slurry pump and ITL system performed well at every concentration. No line plugging or other problems were noted. The results of the CTL runs and later ITL testing are summarized in an appendix to this report.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
885846
Report Number(s):
ORNL/TM-2002/259; TRN: US0604107
Country of Publication:
United States
Language:
English