skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Analysis of granular flow in a pebble-bed nuclear reactor

Other ·
OSTI ID:882198

Pebble-bed nuclear reactor technology, which is currently being revived around the world, raises fundamental questions about dense granular flow in silos. A typical reactor core is composed of graphite fuel pebbles, which drain very slowly in a continuous refueling process. Pebble flow is poorly understood and not easily accessible to experiments, and yet it has a ma jor impact on reactor physics. To address this problem, we perform full-scale, discrete-element simulations in realistic geometries, with up to 440,000 frictional, viscoelastic 6cm-diameter spheres draining in a cylindrical vessel of diameter 3.5m and height 10m with bottom funnels angled at 30° or 60° . We also simulate a bidisperse core with a dynamic central column of smaller graphite moderator pebbles and show that little mixing occurs down to a 1:2 diameter ratio. We analyze the mean velocity, diffusion and mixing, local ordering and porosity (from Voronoi volumes), the residence-time distribution, and the effects of wall friction and discuss implications for reactor design and the basic physics of granular flow.

Research Organization:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
FG02-02ER25530
OSTI ID:
882198
Report Number(s):
DOE/ER/25530-5; TRN: US200716%%199
Country of Publication:
United States
Language:
English