skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Theory for the Comparative RF Surface Fields at Destructive Breakdown for Various Metels

Technical Report ·
DOI:https://doi.org/10.2172/877966· OSTI ID:877966

By destructive breakdown we mean a breakdown event that results in surface melting over large areas on the iris tip region of an accelerator structure. The melting is the result of the formation of macroscopic areas of plasma in contact with the surface. The plasma bombards the surface with an intense ion current ({approx}10{sup 8} A/cm{sup 2}), which is equivalent to a pressure on the order of a thousand Atmospheres. A radial gradient in the pressure produces a ponderomotive force that causes molten copper to migrate away from the iris tip, resulting in a measurable change in the iris shape. This distortion in the iris shape in turn produces an error in the cell-to-cell phase shift of the accelerating wave with a consequent loss in synchronism with the electron beam and a reduction in the effective accelerating gradient. Assuming a long lifetime is desired for the structure, such breakdowns must be avoided or at least limited in number. The accelerating gradient at which these breakdowns begin to occur imposes, therefore, an absolute limit on an operationally attainable gradient. The destructive breakdown limit (DBL) on the accelerating gradient depends on a number of factors, such as the geometry of the irises and coupler, the accuracy of the cell-to-cell tuning (''field flatness''), and the properties of the metal used in the high E-field regions of the structure. In this note we consider only the question of the dependence of the DBL on the metal used in the high surface field areas of the structure. There are also various types of non-destructive breakdowns (NDB's) that occur during the ''processing'' period that, after the initial application of high power, is necessary to bring the gradient up to the desired operating level. During this period, as the input power and gradient are gradually increased, thousands of such NDB's occur. These breakdowns produce a collapse in the fields in the structure as energy stored in the fields is absorbed at the breakdown site. They are often marked by vacuum bursts and an increase in power reflected from the structure. The usual cause for NDB's during processing is the ''explosion'' of field emitters at sharp geometrical features on the metal surface. Exposed impurities in the metal surface can also produce NDB's as they are ''burned'' off by H-field heating or explosive field emission. The breakdown process can be roughly divided into four stages: (1) the formation of ''plasma spots'' at field emission sites, each spot leaving a crater-like footprint; (2) crater clustering, and the formation of areas with hundreds of overlapping craters; (3) surface melting in the region of a crater cluster; (4) the process after surface melting that leads to destructive breakdown.

Research Organization:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC02-76SF00515
OSTI ID:
877966
Report Number(s):
SLAC-TN-06-003; TRN: US0601769
Country of Publication:
United States
Language:
English