skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: MENDING THE IN SITU MANIPULATION BARRIER

Technical Report ·
DOI:https://doi.org/10.2172/876695· OSTI ID:876695

In early 2004, the U.S. Department of Energy (DOE) Richland and Fluor Hanford requested technical assistance from the DOE Headquarters EM-23 Technical Assistance Program to provide a team of technical experts to develop recommendations for mending the In Situ Redox Manipulation (ISRM) Barrier in the 100-D Area of the Hanford Site in Washington State. To accommodate this request, EM-23 provided support to convene a group of technical experts from industry, a national laboratory, and a DOE site to participate in a 2 1/2-day workshop with the objective of identifying and recommending options to enhance the performance of the 100-D Area reactive barrier and of a planned extension to the northeast. This report provides written documentation of the team's findings and recommendations. In 1995, a plume of dissolved hexavalent chromium [Cr(VI)], which resulted from operation of the D/DR Reactors at the Hanford site, was discovered along the Columbia River shoreline and in the 100-D Area. Between 1999 and 2003, a reactive barrier using the In Situ Redox Manipulation (ISRM) technology, was installed a distance of 680 meters along the river to reduce the Cr(VI) in the groundwater. The ISRM technology creates a treatment zone within the aquifer by injection of sodium dithionite, a strong reducing agent that scavenges dissolved oxygen (DO) from the aquifer and reduces ferric iron [Fe(III)], related metals, and oxy-ions. The reduction of Fe(III) to ferrous [Fe(II)] iron provides the primary reduction capacity to reduce Cr(VI) to the +3 state, which is less mobile and less toxic. Bench-scale and field-scale treatability tests were initially conducted to demonstrate proof-of principle and to provide data for estimation of barrier longevity. These calculations estimated barrier longevity in excess of twenty years. However, several years after initial and secondary treatment, groundwater in a number of wells has been found to contain elevated chromium (Cr) concentrations, indicating some loss of reductive capacity within the aquifer. The Technical Assistance Team (TAT) was requested to perform the following activities: (1) evaluate the most probable condition(s) that has led to the presence of Cr(VI) in 12 different barrier wells (i.e. premature loss of reductive capacity), (2) recommend methods for determining the cause of the problem, (3) recommend methods for evaluating the magnitude of the problem, (4) recommend practicable method(s) for mending the barrier that involves a long-term solution, and (5) recommend methods for extending the barrier to the northeast (e.g., changing injection procedure, changing or augmenting the injected material). Since the March 2004 workshop, a decision has been made to place a hold on the barrier extension until more is known about the cause of the problem. However, the report complies with the original request for information on all of the above activities, but focuses on determining the cause of the problem and mending of the existing barrier.

Research Organization:
Hanford Site (HNF), Richland, WA (United States)
Sponsoring Organization:
USDOE - Office of Environmental Management (EM)
DOE Contract Number:
DE-AC06-96RL13200
OSTI ID:
876695
Report Number(s):
WMP-28119 Rev 0; TRN: US200606%%607
Country of Publication:
United States
Language:
English