skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ultrafast studies of electron dynamics at metal-dielectric interfaces

Thesis/Dissertation ·
DOI:https://doi.org/10.2172/8648· OSTI ID:8648
 [1]
  1. Univ. of California, Berkeley, CA (United States)

Femtosecond time- and angle-resolved two-photon photoemission spectroscopy has been used to study fundamental aspects of excited electron dynamics at metal-dielectric interfaces, including layer-by-layer evolution of electronic structure and two-dimensional electron localization. On bare Ag(111), the lifetimes of image states are dominated by their position with respect to the projected bulk band structure. The n = 2 state has a shorter lifetime than the n = 1 state due to degeneracy with the bulk conduction band. As the parallel momentum of the n = 1 image electron increases, the lifetime decreases. With decreasing temperatures, the n = 1 image electrons, with zero or nonzero parallel momentum, all become longer lived. Adsorption of one to three layers of n-heptane results in an approximately exponential increase in lifetime as a function of layer thickness. This results from the formation of a tunneling barrier through which the interfacial electrons must decay, consistent with the repulsive bulk electron affinity of n-alkanes. The lifetimes of the higher quantum states indicate that the presence of the monolayer significantly reduces coupling of the image states to the bulk band structure. These results are compared with predictions of a dielectric continuum model. The study of electron lateral motion shows that optical excitation creates interfacial electrons in quasifree states for motion parallel to the n-heptane/Ag(111) interface. These initially delocalized electrons decay into a localized state within a few hundred femtoseconds. The localized electrons then decay back to the metal by tunneling through the adlayer potential barrier. The localization time depends strongly on the electron's initial parallel momentum and exhibits a non-Arrhenius temperature dependence. The experimental findings are consistent with a 2-D self-trapping process in which electrons become localized by interacting with the topmost plane of the alkane layer. The energy dependence of the self-trapping rate has been modeled with an electron transfer theory. This analysis shows that self-trapping involves inter- and intramolecular vibrational modes of the overlayer and the non-Arrhenius temperature dependence is a result of a strong quantum contribution from the intramolecular modes. These results for a model interface contribute to the fundamental understanding of electron behavior at the interface between metals and molecular solids.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
AC03-76SF00098
OSTI ID:
8648
Report Number(s):
LBNL-42457; TRN: US200305%%447
Resource Relation:
Other Information: TH: Thesis (Ph.D.); Submitted to the Univ. of California, Dept. of Chemistry, Berkeley, CA (US); TH: Thesis (Ph.D.); PBD: 1 Oct 1998; Supercedes report DE00008648; PBD: 1 Oct 1998
Country of Publication:
United States
Language:
English