skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An Integrated Multi-component Processing and Interpretation Framework for 3D Borehole Seismic Data

Abstract

This report covers the April 2004-September 2004 time period. Work has been performed successfully on several tasks 1 through 16. Part of this work has been reported in 15418R03. Most of portions of these tasks have been executed independently. We progressed steadily and completed some of the sub-tasks, while others are still on going. We achieved the goals that we had set up in the task schedule. Reviewing the results of this work period indicates that our plan is solid and we did not encounter any unforeseen problems. The work plan will continue as scheduled. A midyear review will be presented in November or December 2004. Several independent tasks pursuant the statement of project objectives have been executed simultaneously and are still on-going. Use of real seismic test data is augmented by the creation a 3D ray tracing synthetic test data. We used the previously constructed 3D layered model and simulated data acquisition from a set of circular source locations at the surface of the model, while a close to vertical VSP well was used to capture the wave field data. The source pattern was optimized with respect to Fresnel zone width at the target depth. Multi-component particle displacements weremore » recorded every 50 ft down with an array length of 4,000 ft. P-P as well as P-S reflections were specified in the resulting wave field. We ensured a large enough aperture with enough fine sampling to perform advanced processing, imaging and analysis tests in the future during this project. We constantly improved the interfacing of our software libraries with newly designed 3C display classes and mechanisms. We used the previously implemented 3C Work Bench tool as the primary prototyping tool. This work bench allows to load as well as manipulate and display data items in a flexible manner. We continued to demonstrate its basic functionality by loading source maps, horizons, seismic and velocity volumes, well logs into the tool, performing basic QC steps as is necessary in normal processing. We improved functionality by adding multiple windowing options to each of the display items. The windows can be docked or un-docked, which is advantageous in a practical sense, since the display real estate can be spread across multiple display monitors. All windows transparently tie into the same item tree and views get updated dynamically and transparently. Each display item can be associated with a particular display widget as is the case for the multi-component hodogram display widget. All tasks were performed successfully, ensuring the continued progress of this project as outlined in the original proposal. Deliverables generated during this time period consist of reporting details and synthetically modeled seismic data for a 3D layered geological model. The numerically modeled SEGY data, as well as the model representation data, are ready to be sent out to DOE facilities for archiving. Based on the successful conclusion of work performed during this three month period we continue to occasionally generate synthetically modeled 3D borehole seismic data, according to Tasks 2 and 3. At the same time we proceed to design, implement and test according to the original plan the basic data classes and the basic framework outlined in Tasks 5 through 11, as well as 16.« less

Authors:
Publication Date:
Research Org.:
Paulsson Geophysical Services
Sponsoring Org.:
USDOE
OSTI Identifier:
862092
DOE Contract Number:  
FC26-03NT15418
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; BOREHOLES; DATA ACQUISITION; DESIGN; DATA ANALYSIS; THREE-DIMENSIONAL CALCULATIONS; SEISMIC P WAVES; SEISMIC S WAVES; GEOLOGIC MODELS

Citation Formats

Karrenbach, M. An Integrated Multi-component Processing and Interpretation Framework for 3D Borehole Seismic Data. United States: N. p., 2004. Web. doi:10.2172/862092.
Karrenbach, M. An Integrated Multi-component Processing and Interpretation Framework for 3D Borehole Seismic Data. United States. https://doi.org/10.2172/862092
Karrenbach, M. 2004. "An Integrated Multi-component Processing and Interpretation Framework for 3D Borehole Seismic Data". United States. https://doi.org/10.2172/862092. https://www.osti.gov/servlets/purl/862092.
@article{osti_862092,
title = {An Integrated Multi-component Processing and Interpretation Framework for 3D Borehole Seismic Data},
author = {Karrenbach, M},
abstractNote = {This report covers the April 2004-September 2004 time period. Work has been performed successfully on several tasks 1 through 16. Part of this work has been reported in 15418R03. Most of portions of these tasks have been executed independently. We progressed steadily and completed some of the sub-tasks, while others are still on going. We achieved the goals that we had set up in the task schedule. Reviewing the results of this work period indicates that our plan is solid and we did not encounter any unforeseen problems. The work plan will continue as scheduled. A midyear review will be presented in November or December 2004. Several independent tasks pursuant the statement of project objectives have been executed simultaneously and are still on-going. Use of real seismic test data is augmented by the creation a 3D ray tracing synthetic test data. We used the previously constructed 3D layered model and simulated data acquisition from a set of circular source locations at the surface of the model, while a close to vertical VSP well was used to capture the wave field data. The source pattern was optimized with respect to Fresnel zone width at the target depth. Multi-component particle displacements were recorded every 50 ft down with an array length of 4,000 ft. P-P as well as P-S reflections were specified in the resulting wave field. We ensured a large enough aperture with enough fine sampling to perform advanced processing, imaging and analysis tests in the future during this project. We constantly improved the interfacing of our software libraries with newly designed 3C display classes and mechanisms. We used the previously implemented 3C Work Bench tool as the primary prototyping tool. This work bench allows to load as well as manipulate and display data items in a flexible manner. We continued to demonstrate its basic functionality by loading source maps, horizons, seismic and velocity volumes, well logs into the tool, performing basic QC steps as is necessary in normal processing. We improved functionality by adding multiple windowing options to each of the display items. The windows can be docked or un-docked, which is advantageous in a practical sense, since the display real estate can be spread across multiple display monitors. All windows transparently tie into the same item tree and views get updated dynamically and transparently. Each display item can be associated with a particular display widget as is the case for the multi-component hodogram display widget. All tasks were performed successfully, ensuring the continued progress of this project as outlined in the original proposal. Deliverables generated during this time period consist of reporting details and synthetically modeled seismic data for a 3D layered geological model. The numerically modeled SEGY data, as well as the model representation data, are ready to be sent out to DOE facilities for archiving. Based on the successful conclusion of work performed during this three month period we continue to occasionally generate synthetically modeled 3D borehole seismic data, according to Tasks 2 and 3. At the same time we proceed to design, implement and test according to the original plan the basic data classes and the basic framework outlined in Tasks 5 through 11, as well as 16.},
doi = {10.2172/862092},
url = {https://www.osti.gov/biblio/862092}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Oct 15 00:00:00 EDT 2004},
month = {Fri Oct 15 00:00:00 EDT 2004}
}