skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Interactions of proteins in aqueous ammonium-sulfate solutions:Mixtures of lysozyme and ovalbumin

Technical Report ·
DOI:https://doi.org/10.2172/861575· OSTI ID:861575

We present a three-dimensional, time-dependent simulation of a laboratory-scale rod-stabilized premixed turbulent V-flame. The simulations are performed using an adaptive time-dependent low Mach number model with detailed chemical kinetics and a mixture model for differential species diffusion. The algorithm is based on a second-order projection formulation and does not require an explicit sub grid model for turbulence or turbulence chemistry interaction. Adaptive mesh refinement is used to dynamically resolve the flame and turbulent structures. Here, we briefly discuss the numerical procedure and present detailed comparisons with experimental measurements showing that the computation is able to accurately capture the basic flame morphology and associated mean velocity field. Finally, we discuss key issues that arise in performing these types of simulations and the implications of these issues for using computation to form a bridge between turbulent flame experiments and basic combustion chemistry.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE Director, Office of Science. Office of Basic EnergySciences. Division of Chemical Sciences; National ScienceFoundation
DOE Contract Number:
DE-AC02-05CH11231; CTS 9530793
OSTI ID:
861575
Report Number(s):
LBNL-49226; R&D Project: 402201; BnR: KC0302040; TRN: US200601%%195
Country of Publication:
United States
Language:
English