skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SOURCE OF BURNUP VALUES FOR COMMERCIAL SPENT NUCLEAR FUEL ASSEMBLIES

Abstract

Waste packages are loaded with commercial spent nuclear fuel (SNF) that satisfies the minimum burnup requirements of a criticality loading curve. The burnup value assigned by the originating nuclear utility to each SNF assembly (assigned burnup) is used to load waste packages in compliance with a criticality loading curve. The burnup provided by a nuclear utility has uncertainties, so conservative calculation methods are used to characterize those uncertainties for incorporation into the criticality loading curves. Procedural safety controls ensure that the correct assembly is loaded into each waste package to prevent a misload that could create a condition affecting the safety margins. Probabilistic analyses show that procedural safety controls can minimize the chance of a misload but can not completely eliminate the possibility. Physical measurements of burnup with instrumentation in the surface facility are not necessary due to the conservative calculation methods used to produce the criticality loading curves. The reactor records assigned burnup of a commercial SNF assembly contains about two percent uncertainty, which is increased to five-percent to ensure conservatism. This five-percent uncertainty is accommodated by adjusting the criticality loading curve. Also, the record keeping methods of nuclear utilities are not uniform and the level of detail requiredmore » by the NRC has varied over the last several decades. Thus, some SNF assemblies may have assigned burnups that are averages for a batch of assemblies with similar characteristics. Utilities typically have access to more detailed core-follow records that allow the batch average burnup to be changed to an assembly specific burnup. Alternatively, an additional safety margin is incorporated into the criticality loading curve to accommodate SNF assemblies with batch average burnups or greater uncertainties due to the methodology used by the nuclear utility. The utility records provide the assembly identifier, initial {sup 235}U enrichment, and time of discharge from the reactor as well as the assigned burnup, but the distribution. of burnup axially along the assembly length is not provided. The axial burnup profile is maintained within acceptable bounds by the operating conditions of the nuclear reactor and is calculated during preparations to reload a reactor, but the actual burnup profile is not measured. The axial burnup profile is important to the determination of the reactivity of a waste package, so a conservative evaluation of the calculated axial profiles for a large database of SNF has been performed. The product of the axial profile evaluation is a profile that is conservative. Thus, there is no need for physical measurement of the axial profile. The assembly identifier is legible on each SNF assembly and the utility records provide the associated characteristics of the assembly. The conservative methodologies used to determine the criticality loading curve for a waste package provide sufficient margin so that criticality safety is assured for preclosure operations even in the event of a misload. Consideration of misload effects for postclosure time periods is provided by the criticality Features, Events, and Processes (FEPs) analysis. The conservative approaches used to develop and apply the criticality loading curve are thus sufficiently robust that the utility assigned burnup is an adequate source of burnup values, and additional means of verification of assigned burnup through physical measurements are not needed.« less

Authors:
Publication Date:
Research Org.:
Yucca Mountain Project, Las Vegas, NV (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
841278
Report Number(s):
NA
MOL.20050125.0309, DC#43900; TRN: US0600519
DOE Contract Number:  
AC28-01RW12101
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS; BURNUP; CALCULATION METHODS; COMPLIANCE; CRITICALITY; DISTRIBUTION; EVALUATION; NUCLEAR FUELS; REACTORS; SAFETY; VERIFICATION; WASTES

Citation Formats

BSC,. SOURCE OF BURNUP VALUES FOR COMMERCIAL SPENT NUCLEAR FUEL ASSEMBLIES. United States: N. p., 2004. Web. doi:10.2172/841278.
BSC,. SOURCE OF BURNUP VALUES FOR COMMERCIAL SPENT NUCLEAR FUEL ASSEMBLIES. United States. https://doi.org/10.2172/841278
BSC,. 2004. "SOURCE OF BURNUP VALUES FOR COMMERCIAL SPENT NUCLEAR FUEL ASSEMBLIES". United States. https://doi.org/10.2172/841278. https://www.osti.gov/servlets/purl/841278.
@article{osti_841278,
title = {SOURCE OF BURNUP VALUES FOR COMMERCIAL SPENT NUCLEAR FUEL ASSEMBLIES},
author = {BSC,},
abstractNote = {Waste packages are loaded with commercial spent nuclear fuel (SNF) that satisfies the minimum burnup requirements of a criticality loading curve. The burnup value assigned by the originating nuclear utility to each SNF assembly (assigned burnup) is used to load waste packages in compliance with a criticality loading curve. The burnup provided by a nuclear utility has uncertainties, so conservative calculation methods are used to characterize those uncertainties for incorporation into the criticality loading curves. Procedural safety controls ensure that the correct assembly is loaded into each waste package to prevent a misload that could create a condition affecting the safety margins. Probabilistic analyses show that procedural safety controls can minimize the chance of a misload but can not completely eliminate the possibility. Physical measurements of burnup with instrumentation in the surface facility are not necessary due to the conservative calculation methods used to produce the criticality loading curves. The reactor records assigned burnup of a commercial SNF assembly contains about two percent uncertainty, which is increased to five-percent to ensure conservatism. This five-percent uncertainty is accommodated by adjusting the criticality loading curve. Also, the record keeping methods of nuclear utilities are not uniform and the level of detail required by the NRC has varied over the last several decades. Thus, some SNF assemblies may have assigned burnups that are averages for a batch of assemblies with similar characteristics. Utilities typically have access to more detailed core-follow records that allow the batch average burnup to be changed to an assembly specific burnup. Alternatively, an additional safety margin is incorporated into the criticality loading curve to accommodate SNF assemblies with batch average burnups or greater uncertainties due to the methodology used by the nuclear utility. The utility records provide the assembly identifier, initial {sup 235}U enrichment, and time of discharge from the reactor as well as the assigned burnup, but the distribution. of burnup axially along the assembly length is not provided. The axial burnup profile is maintained within acceptable bounds by the operating conditions of the nuclear reactor and is calculated during preparations to reload a reactor, but the actual burnup profile is not measured. The axial burnup profile is important to the determination of the reactivity of a waste package, so a conservative evaluation of the calculated axial profiles for a large database of SNF has been performed. The product of the axial profile evaluation is a profile that is conservative. Thus, there is no need for physical measurement of the axial profile. The assembly identifier is legible on each SNF assembly and the utility records provide the associated characteristics of the assembly. The conservative methodologies used to determine the criticality loading curve for a waste package provide sufficient margin so that criticality safety is assured for preclosure operations even in the event of a misload. Consideration of misload effects for postclosure time periods is provided by the criticality Features, Events, and Processes (FEPs) analysis. The conservative approaches used to develop and apply the criticality loading curve are thus sufficiently robust that the utility assigned burnup is an adequate source of burnup values, and additional means of verification of assigned burnup through physical measurements are not needed.},
doi = {10.2172/841278},
url = {https://www.osti.gov/biblio/841278}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Dec 01 00:00:00 EST 2004},
month = {Wed Dec 01 00:00:00 EST 2004}
}