skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: APPLICATION OF CYCLIC CO2 METHODS IN AN OVER-MATURE MISICBLE CO2 PILOT PROJECT-WEST MALLALIEU FIELD, LINCOLN COUNTY, MS

Technical Report ·
DOI:https://doi.org/10.2172/834344· OSTI ID:834344

This progress report summarizes the results of a miscible cyclic CO{sub 2} project conducted at West Mallalieu Field Unit (WMU) Lincoln County, MS by J.P. Oil Company, Inc. Lafayette, LA. Information is presented regarding the verification of the mechanical integrity of the present candidate well, WMU 17-2B, to the exclusion of nearby more desirable wells from a reservoir standpoint. Engineering summaries of both the injection and flow back phases of the cyclic process are presented. The results indicate that the target volume of 63 MMCF of CO{sub 2} was injected into the candidate well during the month of August 2000 and a combined 73 MMCF of CO{sub 2} and formation gas were recovered during September, October, and November 2000. The fact that all of the injected CO{sub 2} was recovered is encouraging; however, only negligible volumes of liquid were produced with the gas. A number of different factors are explored in this report to explain the lack of economic success. These are divided into several groupings and include: Reservoir Factors, Process Factors, Mechanical Factors, and Special Circumstances Factors. It is impossible to understand precisely the one or combination of interrelated factors responsible for the failure of the experiment but I feel that the original reservoir quality concerns for the subject well WMU 17-2B were not surmountable. Based on the inferences made as to possible failure mechanisms, two future test candidates were selected, WMU 17-10 and 17-14. These lie a significant distance south of the WMU Pilot area and each have a much thicker and higher quality reservoir section than does WMU 17-2B. Both of these wells were productive on pumping units in the not too distant past. This was primary production not influenced by the distant CO{sub 2} injection. These wells are currently completed within somewhat isolated reservoir channels in the Lower Tuscaloosa ''A'' and ''B-2'' Sands that overlie the much more continuous and much larger Lower Tuscaloosa ''C'' Sand reservoir. The current proposal is to not only cycle the Lower Tuscaloosa ''C'' Sand in these wells but to also test the process on these discontinuous ''A'' and ''B-2'' reservoir pools to determine if miscible cyclic processes are applicable where continuous CO{sub 2} operations are not feasible.

Research Organization:
J.P. Oil Company, INC. (US)
Sponsoring Organization:
(US)
DOE Contract Number:
FG26-99BC15243
OSTI ID:
834344
Resource Relation:
Other Information: PBD: 1 Sep 2001
Country of Publication:
United States
Language:
English