skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modeling and Simulation of Long-Term Performance of Near-Surface Barriers

Conference ·
OSTI ID:827424

Society has and will continue to generate hazardous wastes whose risks must be managed. For exceptionally toxic, long-lived, and feared waste, the solution is deep burial, e.g., deep geological disposal at Yucca Mtn. For some waste, recycle or destruction/treatment is possible. The alternative for other wastes is storage at or near the ground level (in someone's back yard); most of these storage sites include a surface barrier (cap) to prevent migration of the waste due to infiltration of surface water. The design lifespan for such barriers ranges from 30 to 1000 years, depending on hazard and regulations. In light of historical performance, society needs a better basis for predicting barrier performance over long time periods and tools for optimizing maintenance of barriers while in service. We believe that, as in other industries, better understanding of the dynamics of barrier system degradation will enable improved barriers (cheaper, longer-lived, simpler, easier to maintain) and improved maintenance. We are focusing our research on earthen caps, especially those with evapo-transpiration and capillary breaks. Typical cap assessments treat the barrier's structure as static prior to some defined lifetime. Environmental boundary conditions such as precipitation and temperature are treated as time dependent. However, other key elements of the barrier system are regarded as constant, including engineered inputs (e.g., fire management strategy, irrigation, vegetation control), surface ecology (critical to assessment of plant transpiration), capillary break interface, material properties, surface erosion rate, etc. Further, to be conservative, only harmful processes are typically considered. A more holistic examination of both harmful and beneficial processes will provide more realistic pre-service prediction and in-service assessment of performance as well as provide designers a tool to encourage beneficial processes while discouraging harmful processes. Thus, the INEEL started a new project on long-term barrier integrity in April 2002 that aims to catalyze a Barrier Improvement Cycle (iterative learning and application) and thus enable Remediation System Performance Management (doing the right maintenance neither too early nor too late, prior to system-level failure). This paper describes our computer simulation approach for better understanding the relationships and dynamics between the various components and management decisions in a cap. The simulation is designed to clarify the complex relationships between the various components within the cap system and the various management practices that affect the barrier performance. We have also conceptualized a time-dependent 3-D simulation with rigorous solution to unsaturated flow physics with complex surface boundary conditions.

Research Organization:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Organization:
US Department of Energy (US)
OSTI ID:
827424
Resource Relation:
Conference: Waste Management 2003 Symposium, Tucson, AZ (US), 02/23/2003--02/27/2003; Other Information: PBD: 25 Feb 2003
Country of Publication:
United States
Language:
English