skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: WATER AS A REAGENT FOR SOIL REMEDIATION

Technical Report ·
DOI:https://doi.org/10.2172/824937· OSTI ID:824937

SRI International is conducting experiments to develop and evaluate hydrothermal extraction technology or hot water extraction (HWE) technology for remediating petroleum-contaminated soils. Most current remediation practices either fail to remove the polycyclic aromatic hydrocarbons (PAHs) found in petroleum-contaminated sites, are too costly, or require the use of organic solvents at the expense of additional contamination and with the added cost of recycling solvents. Hydrothermal extraction offers the promise of efficiently extracting PAHs and other kinds of organics from contaminated soils at moderate temperatures and pressures, using only water and inorganic salts such as carbonate. SRI has conducted experiments to measure the solubility and rate of solubilization of selected PAHs (fluoranthene, pyrene, chrysene, 9,10-dimethylanthracene) in water using SRI's hydrothermal optical cell with the addition of varying amounts of sodium carbonate to evaluate the efficiency of the technology for removing PAHs from the soil. SRI data shows a very rapid increase in solubility of PAHs with increase in temperature in the range 25-275 C. SRI also measured the rate of solubilization, which is a key factor in determining the reactor parameters. SRI results for fluoranthene, pyrene, chrysene, and 9,10-dimethylanthracene show a linear relationship between rate of solubilization and equilibrium solubility. Also, we have found the rate of solubilization of pyrene at 275 C to be 6.5 ppm/s, indicating that the equilibrium solubilization will be reached in less than 3 min at 275 C; equilibrium solubility of pyrene at 275 C is 1000 ppm. Also, pyrene and fluoranthene appear to have higher solubilities in the presence of sodium carbonate. In addition to this study, SRI studied the rate of removal of selected PAHs from spiked samples under varying conditions (temperature, pore sizes, and pH). We have found a higher removal of PAHs in the presence of sodium carbonate in both sand and bentonite systems. Also, sodium carbonate greatly reduces the possible reactor corrosion under hydrothermal conditions. Our results show that a water-to-sand ratio of at least 3:1 is required to efficiently remove PAH from soil under static conditions.

Research Organization:
SRI International (US)
Sponsoring Organization:
(US)
DOE Contract Number:
AC26-99BC15224
OSTI ID:
824937
Resource Relation:
Other Information: PBD: 29 Mar 2001
Country of Publication:
United States
Language:
English