skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An Evaluation of a Dual Coriolis Meter System for In-Line Monitoring of Suspended Solids Concentrations in Radioactive Slurries

Technical Report ·
DOI:https://doi.org/10.2172/814445· OSTI ID:814445

The U.S. Department of Energy (DOE) has millions of gallons of radioactive liquid and sludge wastes stored in underground tanks at several of its sites, such as Hanford, Savannah River, and Oak Ridge. In order to comply with various regulations and to circumvent potential problems associated with tank integrity, these wastes must be retrieved from the underground tanks, transferred to treatment facilities (or other storage location), and processed to a stable waste form. Each sludge waste will typically be mobilized by some mechanical means (e.g., mixer pump, submerged jet) and mixed with the supernatant to create a slurry that can be transferred by pipeline to the desired destination. Depending on the DOE site, such slurries may be transferred up to six miles. Since these wastes are radioactive, it is critically important that the transfers be conducted safely and successfully. The transport properties of a given slurry must be within the appropriate design limits to prevent the formation of a pipeline plug. The consequences of a plugged pipeline with radioactive material are unacceptable from the perspectives of safety, cost, and schedule. If a pipeline plug occurs and conventional methods (e.g., water flushing) are not successful, either the entire pipeline must be replaced (and the plugged pipeline remediated at a later date) or the plugged sections must be located, excised, and replaced. Either option would expose workers to radiation fields, and the cost of the project could escalate and result in a severe delay of the project schedule. Even if a pipeline plug were successfully removed by conventional methods, the project would experience some delay and additional costs. For example, flushing a plugged pipeline would require a shutdown of operations until the situation could be resolved; and such action would lead to the generation of additional liquid waste, which would also require treatment. To reduce the risk of plugging a pipeline, the relevant properties of the slurry (e.g., density, suspended solids concentration, viscosity, and particle size distribution) should be determined to be within acceptable limits prior to transfer. These properties should also be continuously monitored and controlled within specified limits while the slurry transfer is in progress. The baseline method for determining the transport properties of slurries involves sampling and analysis. This method is time-consuming and costly, and it does not provide real-time information. In addition, the personnel who collect and analyze the samples are exposed to radiation. It is also questionable as to whether a laboratory analyst can obtain representative aliquots from the solid-liquid mixtures in the sample jar. The alternative method for determining the transport properties is in-line analysis. An inline instrument is one that is connected to the process, analyzes the slurry as it flows through or by the instrument, and provides the results within seconds. This instrument can provide immediate feedback to operators so that, when necessary, the operators can respond quickly to counteract conditions that could lead to pipeline plugging (e.g., backflushing the pipeline with water).

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
AC05-00OR22725
OSTI ID:
814445
Report Number(s):
ORNL/TM-2000/184; TRN: US0304254
Resource Relation:
Other Information: PBD: 6 Sep 2000
Country of Publication:
United States
Language:
English