skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A NOVEL INTEGRATED STACK APPROACH FOR REALIZING MECHANICALLY ROBUST SOLID OXIDE FUEL CELLS

Technical Report ·
DOI:https://doi.org/10.2172/812538· OSTI ID:812538

SOFCs are a very promising energy conversion technology for utilization of fossil fuels. The proposed project is to improve the viability of SOFCs by introducing a novel stacking geometry. The geometry involved has all active SOFC components and the interconnect deposited as thin layers on an electrically insulating support. This allows the choice of a support material that provides optimal mechanical toughness and thermal shock resistance. The supports are in the form of flattened tubes, providing relatively high strength, high packing densities, and minimizing the number of seals required. The integration of SOFCs and interconnects on the same support has several other advantages including the reduction of electrical resistances associated with pressure contacts between the cells and interconnects, relaxation of fabrication tolerances required for pressure contacts, reduction of ohmic losses, and reduction of interconnect conductivity requirements. In this report, we describe the processing methodologies that have been developed for fabricating the integrated solid oxide fuel cell (ISOFC), along with results on characterization of the component materials: support, electrolyte, anode, cathode, and interconnect. Screen printing was the primary processing method developed. A centrifugal casting technique was also developed for depositing thin 8 mol % yttrium stabilized zirconia (YSZ) electrolyte layers on porous NiO-YSZ anode substrates. Dense pinhole-free YSZ coatings were obtained by co-sintering the bi-layers at 1400 C. After depositing La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSM)-YSZ cathodes, single SOFCs produced near-theoretical open-circuit voltages and power densities of 0.55 W/cm{sup 2} at 800 C. Initial stack operation results are also described.

Research Organization:
Northwestern University (US)
Sponsoring Organization:
(US)
DOE Contract Number:
FG26-00NT40814
OSTI ID:
812538
Resource Relation:
Other Information: PBD: 1 Nov 2001
Country of Publication:
United States
Language:
English