skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Simulation Studies of the Role of Reconnection in the ''Current Hole'' Experiments in the Joint European Torus

Technical Report ·
DOI:https://doi.org/10.2172/809965· OSTI ID:809965

Injection of lower-hybrid current drive into the current ramp-up phase of the Joint European Torus (JET) plasma discharges has been observed to produce an annular current distribution with a core region of essentially zero current density [Hawkes, et al., Phys. Rev. Lett. 87 (2001) 115001]. Similar ''current holes'' have been observed in the Japan Atomic Energy Research Institute (JAERI) Tokamak 60 Upgrade (JT-60U) plasma discharges with off-axis current drive supplied by the bootstrap current [T. Fujita, et al., Phys. Rev. Lett. 87 (2001) 245001]. In both cases, the central current does not go negative although current diffusion calculations indicate that there is sufficient noninductive current drive for this to occur. This is explained by the Multi-level 3-D code (M3D) nonlinear 2-D and 3-D resistive magnetohydrodynamic (MHD) simulations in toroidal geometry, which predict that these plasma discharges undergo n = 0 reconnection events--''axisymmetric sawteeth''--that redistribute th e current to hold its core density near zero. Unlike conventional sawteeth, these events retain the symmetry of the equilibrium, and thus are best viewed as a transient loss of equilibrium caused when an iota = 0 rational surface enters the plasma. If the current-density profile has a central minimum, this surface will enter on axis; otherwise it will enter off-axis. In the first case, the reconnection is limited to a small region around the axis and clamps the core current at zero. In the second case, more typical of the JET experiments, the core current takes on a finite negative value before the iota = 0 surface appears, resulting in discrete periodic axisymmetric sawtooth events with a finite minor radius. Interpretation of the simulation results is given in terms of analytic equilibrium theory, and the relation to conventional sawteeth and to a recent reduced-MHD analysis of this phenomenon in cylindrical geometry [Huysmans, et al., Phys. Rev. Lett. 87 (2001) 245002] is discussed.

Research Organization:
Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Sponsoring Organization:
USDOE Office of Science (US)
DOE Contract Number:
AC02-76CH03073
OSTI ID:
809965
Report Number(s):
PPPL-3770; TRN: US0302663
Resource Relation:
Other Information: PBD: 21 Jan 2003
Country of Publication:
United States
Language:
English