skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Generalization of Spatial Channel Theory to Three-Dimensional x-y-z Transport Computations

Conference ·
OSTI ID:797087

Spatial channel theory, initially introduced in 1977 by M. L. Williams and colleagues at ORNL, is a powerful tool for shield design optimization. It focuses on so called ''contributon'' flux and current of particles (a fraction of the total of neutrons, photons, etc.) which contribute directly or through their progeny to a pre-specified response, such as a detector reading, dose rate, reaction rate, etc., at certain locations of interest. Particles that do not contribute directly or indirectly to the pre-specified response, such as particles that are absorbed or leak out, are ignored. Contributon fluxes and currents are computed based on combined forward and adjoint transport solutions. The initial concepts were considerably improved by Abu-Shumays, Selva, and Shure by introducing steam functions and response flow functions. Plots of such functions provide both qualitative and quantitative information on dominant particle flow paths and identify locations within a shield configuration that are important in contributing to the response of interest. Previous work was restricted to two dimensional (2-D) x-y rectangular and r-z cylindrical geometries. This paper generalizes previous work to three-dimensional x-y-z geometry, since it is now practical to solve realistic 3-D problems with multidimensional transport programs. As in previous work, new analytic expressions are provided for folding spherical harmonics representations of forward and adjoint transport flux solutions. As a result, the main integrals involve in spatial channel theory are computed exactly and more efficiently than by numerical quadrature. The analogy with incompressible fluid flow is also applied to obtain visual qualitative and quantitative measures of important streaming paths that could prove vital for shield design optimization. Illustrative examples are provided. The connection between the current paper and the excellent work completed by M. L. Williams in 1991 is also discussed.

Research Organization:
Bettis Atomic Power Lab., West Mifflin, PA (US)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
AC11-98PN38206
OSTI ID:
797087
Report Number(s):
B-T-3410; TRN: US0305012
Resource Relation:
Conference: ANS Radiation Protection and Shielding Topical Meeting, Santa Fe, NM (US), 04/14/2002--04/17/2002; Other Information: Supercedes report DE00797087; PBD: 12 Mar 2002; PBD: 12 Mar 2002
Country of Publication:
United States
Language:
English