skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: NATIVE PLANTS FOR OPTIMIZING CARBON SEQUESTRATION IN RECLAIMED LANDS

Abstract

Carbon emissions and atmospheric concentrations are expected to continue to increase through the next century unless major changes are made in the way carbon is managed. Managing carbon has emerged as a pressing national energy and environmental need that will drive national policies and treaties through the coming decades. Addressing carbon management is now a major priority for DOE and the nation. One way to manage carbon is to use energy more efficiently to reduce our need for major energy and carbon source-fossil fuel combustion. Another way is to increase our use of low-carbon and carbon free fuels and technologies. A third way, and the focus of this proposal, is carbon sequestration, in which carbon is captured and stored thereby mitigating carbon emissions. Sequestration of carbon in the terrestrial biosphere has emerged as the principle means by which the US will meet its near-term international and economic requirements for reducing net carbon emissions (DOE Carbon Sequestration: State of the Science. 1999; IGBP 1998). Terrestrial carbon sequestration provides three major advantages. First, terrestrial carbon pools and fluxes are of sufficient magnitude to effectively mitigate national and even global carbon emissions. The terrestrial biosphere stores {approximately}2060 GigaTons of carbon and transfers approximatelymore » 120 GigaTons of carbon per year between the atmosphere and the earth's surface, whereas the current global annual emissions are about 6 GigaTons. Second, we can rapidly and readily modify existing management practices to increase carbon sequestration in our extensive forest, range, and croplands. Third, increasing soil carbon is without negative environment consequences and indeed positively impacts land productivity. The terrestrial carbon cycle is dependent on several interrelationships between plants and soils. Because the soil carbon pool ({approximately}1500 Giga Tons) is approximately three times that in terrestrial vegetation ({approximately}560 GigaTons), the principal focus of terrestrial sequestration efforts is to increase soil carbon. But soil carbon ultimately derives from vegetation and therefore must be managed indirectly through aboveground management of vegetation and nutrients. Hence, the response of whole ecosystems must be considered in terrestrial carbon sequestration strategies.« less

Authors:
;
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
US Department of Energy (US)
OSTI Identifier:
775300
Report Number(s):
LA-UR-01-1126
TRN: AH200121%%93
DOE Contract Number:  
W-7405-ENG-36
Resource Type:
Conference
Resource Relation:
Conference: Conference title not supplied, Conference location not supplied, Conference dates not supplied; Other Information: PBD: 1 Feb 2001
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; BIOSPHERE; CARBON; CARBON CYCLE; COMBUSTION; ECONOMICS; ECOSYSTEMS; MANAGEMENT; NUTRIENTS; PLANTS; SOILS

Citation Formats

UNKEFER, P, EBINGER, M, and ET AL. NATIVE PLANTS FOR OPTIMIZING CARBON SEQUESTRATION IN RECLAIMED LANDS. United States: N. p., 2001. Web.
UNKEFER, P, EBINGER, M, & ET AL. NATIVE PLANTS FOR OPTIMIZING CARBON SEQUESTRATION IN RECLAIMED LANDS. United States.
UNKEFER, P, EBINGER, M, and ET AL. 2001. "NATIVE PLANTS FOR OPTIMIZING CARBON SEQUESTRATION IN RECLAIMED LANDS". United States. https://www.osti.gov/servlets/purl/775300.
@article{osti_775300,
title = {NATIVE PLANTS FOR OPTIMIZING CARBON SEQUESTRATION IN RECLAIMED LANDS},
author = {UNKEFER, P and EBINGER, M and ET AL},
abstractNote = {Carbon emissions and atmospheric concentrations are expected to continue to increase through the next century unless major changes are made in the way carbon is managed. Managing carbon has emerged as a pressing national energy and environmental need that will drive national policies and treaties through the coming decades. Addressing carbon management is now a major priority for DOE and the nation. One way to manage carbon is to use energy more efficiently to reduce our need for major energy and carbon source-fossil fuel combustion. Another way is to increase our use of low-carbon and carbon free fuels and technologies. A third way, and the focus of this proposal, is carbon sequestration, in which carbon is captured and stored thereby mitigating carbon emissions. Sequestration of carbon in the terrestrial biosphere has emerged as the principle means by which the US will meet its near-term international and economic requirements for reducing net carbon emissions (DOE Carbon Sequestration: State of the Science. 1999; IGBP 1998). Terrestrial carbon sequestration provides three major advantages. First, terrestrial carbon pools and fluxes are of sufficient magnitude to effectively mitigate national and even global carbon emissions. The terrestrial biosphere stores {approximately}2060 GigaTons of carbon and transfers approximately 120 GigaTons of carbon per year between the atmosphere and the earth's surface, whereas the current global annual emissions are about 6 GigaTons. Second, we can rapidly and readily modify existing management practices to increase carbon sequestration in our extensive forest, range, and croplands. Third, increasing soil carbon is without negative environment consequences and indeed positively impacts land productivity. The terrestrial carbon cycle is dependent on several interrelationships between plants and soils. Because the soil carbon pool ({approximately}1500 Giga Tons) is approximately three times that in terrestrial vegetation ({approximately}560 GigaTons), the principal focus of terrestrial sequestration efforts is to increase soil carbon. But soil carbon ultimately derives from vegetation and therefore must be managed indirectly through aboveground management of vegetation and nutrients. Hence, the response of whole ecosystems must be considered in terrestrial carbon sequestration strategies.},
doi = {},
url = {https://www.osti.gov/biblio/775300}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Feb 01 00:00:00 EST 2001},
month = {Thu Feb 01 00:00:00 EST 2001}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: