skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: REGULATION OF COAL POLYMER DEGRADATION BY FUNGI

Technical Report ·
DOI:https://doi.org/10.2172/774951· OSTI ID:774951

A variety of lignin degrading fungi mediate solubilization and subsequent biodegradation of coal macromolecules (a.k.a. coal polymer) from highly oxidized low rank coals such as leonardites. It appears that oxalate or possibly other metal chelators (i.e., certain Krebs Cycle intermediates) mediate solubilization of low rank coals while extracellular oxidases have a role in subsequent oxidation of solubilized coal macromolecule. These processes are under nutritional control. For example, in the case of P. chrysosporium, solubilization of leonardite occurred when the fungi were cultured on most but not all nutrient agars tested and subsequent biodegradation occurred only in nutrient nitrogen limited cultures. Lignin peroxidases mediate oxidation of coal macromolecule in a reaction that is dependent on the presence of veratryl alcohol and hydrogen peroxide. Kinetic evidence suggests that veratryl alcohol is oxidized to the veratryl alcohol cation radical which then mediates oxidation of the coal macromolecule. Results by others suggest that Mn peroxidases mediate formation of reactive Mn{sup 3+} complexes which also mediate oxidation of coal macromolecule. A biomimetic approach was used to study solubilization of a North Dakota leonardite. It was found that a concentration {approximately}75 mM sodium oxalate was optimal for solubilization of this low rank coal. This is important because this is well above the concentration of oxalate produced by fungi in liquid culture. Higher local concentrations probably occur in solid agar cultures and thus may account for the observation that greater solubilization occurs in agar media relative to liquid media. The characteristics of biomimetically solubilized leonardite were similar to those of biologically solubilized leonardite. Perhaps our most interesting observation was that in addition to oxalate, other common Lewis bases (phosphate/hydrogen phosphate/dihydrogen phosphate and bicarbonate/carbonate ions) are able to mediate substantial solubilization of leonardite at physiological pH values. Lastly, we present evidence that some fungi appear to possess coal solubilization ability in which the initial events of solubilization is not mediated by oxalate ion.

Research Organization:
Federal Energy Technology Center Morgantown (FETC-MGN), Morgantown, WV (United States); Federal Energy Technology Center Pittsburgh (FETC-PGH), Pittsburgh, PA (United States)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
FG22-94PC94209
OSTI ID:
774951
Report Number(s):
DE-FG22-94PC94209-17; TRN: AH200111%%43
Resource Relation:
Other Information: PBD: 30 Nov 1998
Country of Publication:
United States
Language:
English