skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Toxicity of Gadolinium to Some Aquatic Microbes

Journal Article · · Bulletin of Environmental Contamination and Toxicology
OSTI ID:773932

The toxicity of gadolinium to algae and bacteria was determined as part of an effort to develop a biological process to purify drums containing spent nuclear reactor heavy water moderator (D2O). This water was contaminated with high concentrations of gadolinium nitrate, a chemical used as a neutron poison during former nuclear reactor operations at the Savannah River Site (SRS) near Aiken, SC. Nuclear reactors were operated for approximately 30 years at the SRS to produce nuclear weapons materials for national defense. Throughout this period, a heavy water solution of gadolinium nitrate was utilized in a standby emergency shutdown system that could inject this chemical into the reactor moderator coolant water. The chemical was used for this purpose because the high neutron absorption cross sections of some gadolinium isotopes make gadolinium salts such as GdNO3 effective in controlling nuclear activity in aqueous systems (Gilbert et al. 1985; Rodenas et al. 1990). The use of this practice resulted in a large inventory of this degraded heavy water containing gadolinium nitrate. Microbiological and chemical studies were initiated to evaluate the potential use of bacteria and algae for water purification of the drums. Since metals are often toxic to microbes when present at concentrations substantially higher than natural environmental levels, it was hypothesized that Gd may be toxic to selected microorganisms (algae and bacteria) at the very high concentrations (average 80,000 mg/L, maximum 259,000 mg/L) present in most of the drums. Two principal components of the study included: (1) chemical and microbiological characterization of representative drums, and (2) an evaluation of the toxicity of gadolinium to selected species of algae. In addition to wastewater from nuclear production reactor operations, gadolinium waste is also generated from medical applications, especially MRI, and various electronic components including CD disks. Despite growing and widespread usage of this rare element, there is a paucity of information on the toxicity of gadolinium.

Research Organization:
Savannah River Site (SRS), Aiken, SC (United States)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
AC09-96SR18500
OSTI ID:
773932
Report Number(s):
WSRC-MS-2000-00638; BECTA6; TRN: AH200107%%81
Journal Information:
Bulletin of Environmental Contamination and Toxicology, Other Information: PBD: 24 Jan 2001; ISSN 0007-4861
Country of Publication:
United States
Language:
English