skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: DWPF Macrobatch 2 Melt Rate Tests

Technical Report ·
DOI:https://doi.org/10.2172/773120· OSTI ID:773120

The Defense Waste Processing Facility (DWPF) canister production rate must be increased to meet canister production goals. Although a number of factors exist that could potentially increase melt rate, this study focused on two: (1) changes in frit composition and (2) changes to the feed preparation process to alter the redox of the melter feed. These two factors were investigated for Macrobatch 2 (sludge batch 1B) utilizing crucible studies and a specially designed ''melt rate'' furnace. Other potential factors that could increase melt rate include: mechanical mixing via stirring or the use of bubblers, changing the power skewing to redistribute the power input to the melter, and elimination of heat loss (e.g. air in leakage). The melt rate testing in FY00 demonstrated that melt rate can be improved by adding a different frit or producing a much more reducing glass by the addition of sugar as a reductant. The frit that melted the fastest in the melt rate testing was Frit 165. A paper stud y was performed using the Product Composition Control System (PCCS) to determine the impact on predicted glass viscosity, liquidus, durability, and operating window if the frit was changed from Frit 200 to Frit 165. PCCS indicated that the window was very similar for both frits. In addition, the predicted viscosity of the frit 165 glass was 46 poise versus 84 poise for the Frit 200 glass. As a result, a change from Frit 200 to Frit 165 is expected to increase the melt rate in DWPF without decreasing waste loading.

Research Organization:
Savannah River Site (SRS), Aiken, SC (United States)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
AC09-96SR18500
OSTI ID:
773120
Report Number(s):
WSRC-TR-2000-00395; TRN: US0100016
Resource Relation:
Other Information: PBD: 3 Jan 2001
Country of Publication:
United States
Language:
English