skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Composite polymer electrolytes using fumed silica fillers: synthesis, rheology and electrochemistry

Technical Report ·
DOI:https://doi.org/10.2172/761809· OSTI ID:761809

The goal of the synthesis research was to devise routes to PEG/fumed silica/lithium salt composites that can be processed and then photochemically cross-linked to form mechanically stable electrolytes. An essential feature of the system is that the ionic conductivity and the mechanical properties must be de-coupled from each other, i.e., cross-linking of the fumed silica matrix must not cause a significant deterioration of the conductivity of the composite. As shown in Figure 2, we prepared a range of surface-modified fumed silicas and investigated their ability to form mechanically stable composite electrolytes. The groups used to modify the surface properties of the silica ranged from simple linear alkyls that render the silica hydrophobia to polyethers that promote compatibility with the electrolyte. From these materials we developed a cross-linkable system that satisfies the criteria of processibility and high-conductivity. The key material needed for the cross-linking reaction are silicas that bear surface-attached monomers. As shown schematically in Figure 3a, we prepared fumed silicas with a combination of surface groups, for example, an octyl chain with different coverages of tethered methacrylates. The length of the tether was varied, and we found that both C{sub 3} and C{sub 8} tethers gave useful composites. The functionalized silicas were combined with PEG-DM, AIBN or benzophenone (free radical initiators), LiClO{sub 4} or Li imide, and either methyl, butyl, or octyl, methacrylate to form stable clear gels. Upon irradiation with UV light, polymerization of both the tethered methacrylate and the added methacrylate took place, yielding a cross-linked rubbery composite material. Ionic conductivity measurements before and after cross-linking showed only a slight decrease (see Figure 9 later), thereby offering strong experimental evidence that the mechanical properties conferred by the silica matrix are de-coupled from the ionic conductivity of the PEG-DM matrix.

Research Organization:
North Carolina State University, Raleigh, NC 27695-7905 (US)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
FG05-94ER14495
OSTI ID:
761809
Report Number(s):
94-ER-14495; TRN: US200417%%136
Resource Relation:
Other Information: PBD: 28 Jun 1999
Country of Publication:
United States
Language:
English

Similar Records

Preparation and characterization of cross-linked composite polymer electrolytes
Journal Article · Sun Nov 01 00:00:00 EST 1998 · Chemistry of Materials · OSTI ID:761809

Composite electrolytes prepared from fumed silica, polyethylene oxide oligomers, and lithium salts
Journal Article · Sat Feb 01 00:00:00 EST 1997 · Journal of the Electrochemical Society · OSTI ID:761809

Rubbery block copolymer electrolytes for solid-state rechargeable lithium batteries
Journal Article · Fri Jan 01 00:00:00 EST 1999 · Journal of the Electrochemical Society · OSTI ID:761809