skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Huygens-Fresnel Wave-Optics Simulation of Atmosphere Optical Turbulence and Reflective Speckle in CO{sub 2} Differential Absorption Lidar (DIAL)

Conference ·
OSTI ID:761193

The measurement sensitivity of CO{sub 2} differential absorption lidar (DIAL) can be affected by a number of different processes. We have previously developed a Huygens-Fresnel wave optics propagation code to simulate the effects of two of these process: effects caused by beam propagation through atmospheric optical turbulence and effects caused by reflective speckle. Atmospheric optical turbulence affects the beam distribution of energy and phase on target. These effects include beam spreading, beam wander and scintillation which can result in increased shot-to-shot signal noise. In addition, reflective speckle alone has been shown to have a major impact on the sensitivity of CO{sub 2} DIAL. However, in real DIAL systems it is a combination of these phenomena, the interaction of atmospheric optical turbulence and reflective speckle, that influences the results. In this work, we briefly review a description of our model including the limitations along with previous simulation s of individual effects. The performance of our modified code with respect to experimental measurements affected by atmospheric optical turbulence and reflective speckle is examined. The results of computer simulations are directly compared with lidar measurements and show good agreement. In addition, advanced studies have been performed to demonstrate the utility of our model in assessing the effects for different lidar geometries on RMS noise and correlation ''size'' in the receiver plane.

Research Organization:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Organization:
USDOE Office of Defense Programs (DP) (US)
DOE Contract Number:
W-7405-ENG-36
OSTI ID:
761193
Report Number(s):
LA-UR-99-2271; TRN: AH200104%%387
Resource Relation:
Conference: ITR Conference, Livermore, CA (US), 03/23/1999--03/25/1999; Other Information: PBD: 23 Mar 1999
Country of Publication:
United States
Language:
English