skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: FAD: A full-acceptance detector for physics at the SSC

Conference ·
OSTI ID:7222715

For high energy pp collisions, the concepts 4{pi}'' and full acceptance'' are distinct. At the SSC, the appropriate variables for describing phase space are the lego variables: pseudorapidity {eta} and azimuthal angle {phi}. While most of 4{pi} is covered by pseudorapidities less than 3 or 4 in magnitude, at the SSC there is very interesting physics out to {eta}'s of 9 to 12. For over a year I have been attempting to encourage an initiative at the SSC to provide a detector which could cover the missing acceptance of the two big detectors, which in particular have no appreciable charged particle tracking with good momentum resolution beyond rapidities of 2.5 or so. The nonnegotiable criteria for an FAD are for me the following: 1. All charged particles are seen and their momenta measured well, provided pt is not too large. 2. All photons are seen and their momenta are measured well. 3. The physics of rapidity-gaps is not compromised. This means angular coverage from 90{degrees} down to tens of microradians. The above criteria cannot be met on day one of SSC commissioning with the amount of funds available. But I believe a staged approach is feasible, with a lot of interesting physics available along the way. The basic philosophy underlying the FAD idea is that it should first and most be a survey instrument, sensitive to almost everything, but optimized for almost nothing. Its strength is in the perception of complex patterns individual events, used as a signature of new and/or interesting physics. Examples of such patterns will be given later.

Research Organization:
Stanford Linear Accelerator Center, Menlo Park, CA (United States)
Sponsoring Organization:
USDOE; USDOE, Washington, DC (United States)
DOE Contract Number:
AC03-76SF00515
OSTI ID:
7222715
Report Number(s):
SLAC-PUB-5927; CONF-9206284-1; ON: DE93001765
Resource Relation:
Conference: 7. international symposium on very high energy cosmic ray interactions, Ann Arbor, MI (United States), 21-27 Jun 1992
Country of Publication:
United States
Language:
English