skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Spent-fuel special-studies progress report: probable mechanisms for oxidation and dissolution of single-crystal UO/sub 2/ surfaces

Technical Report ·
DOI:https://doi.org/10.2172/6854511· OSTI ID:6854511

Due to the complexity of the structural, microstructural and compositional characteristics of spent fuel, basic leaching and dissolution mechanisms were studied with UO/sub 2/ matrix material, specifically with single-crystal UO/sub 2/, to isolate individual contributory factors. The effects of oxidation and oxidation-dissolution were investigated in different oxidation conditions, such as in air, oxygenated solutions and deionized water containing H/sub 2/O/sub 2/. In addition, the effects of temperature on dissolution of UO/sub 2/ were studied in autoclaves at 75 and 150/sup 0/C. Also, oxidation and dissolution measurements were investigated via electrochemical methods to determine if those techniques could be applied to the characterization of leaching and dissolution of spent fuel in a hot cell. Finally, the effects of radiation were explored since the radiolysis of water may create a localized oxidizing condition at or near the spent fuel-solution interface, even in neutral or reducing conditions as commonly found in deep geological environments. The oxidation and oxidation-dissolution mechanisms for UO/sub 2/ are proposed as follows: The UO/sub 2/ surface is first oxidized in solution to form a UO/sub 2+x/ surface layer several angstroms thick. This oxidized surface has a high dissolution rate since the UO/sub 2+x/ reacts with the dissolved O/sub 2/, or H/sub 2/O/sub 2/, to form uranyl complex ions in a U(VI) state. As the uranyl ions exceed the solubility limits in solution, they become hydrolyzed to form solid deposits and suspended particles of UO/sub 3/ hydrates. The thickness and porosity of the deposited UO/sub 3/ hydrate surface-film is dependent on temperature, pH and deposition time. A long-term dissolution rate is then determined by the nature of the surface film, such as porosity, solubility and mechanical properties.

Research Organization:
Battelle Pacific Northwest Labs., Richland, WA (United States)
DOE Contract Number:
AC06-76RL01830
OSTI ID:
6854511
Report Number(s):
PNL-3566; TRN: 81-006598
Country of Publication:
United States
Language:
English