skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Sorption enhanced reaction process for production of hydrogen. Phase 1 final report

Technical Report ·
DOI:https://doi.org/10.2172/631160· OSTI ID:631160

Hydrogen is one of the most suitable energy sources from both technological and environmental perspectives for the next century, especially in the context of a sustainable global energy economy. The most common industrial process to produce high-purity (99.99+ mol%) hydrogen is to reform natural gas by a catalytic reaction with steam at a high temperature. Conventional steam-methane reforming (SMR) contributed to approximately 2.4 billion standard cubic feet per day (SCFD) of hydrogen production in the US. By 1998, the growth of SMR-produced hydrogen in the US is expected to reach 3.4 billion SCFD, with the increased demand attributed to hydrogen`s use in reformulated gasolines required by the Clean Air Act. The goal of this work is to develop an even more efficient process for reforming steam and methane to hydrogen product than the conventional SMR process. The application of Sorption Enhanced Reaction (SER) technology to SMR has the potential to markedly reduce the cost of hydrogen through lower capital and energy requirements. The development of a more cost-effective route to hydrogen production based on natural gas as the primary energy source will accelerate the transition to a more hydrogen-based economy in the future. The paper describes the process, which includes a sorbent for CO{sub 2} removal, and the various tasks involved in its development.

Research Organization:
Air Products and Chemicals, Inc., Allentown, PA (United States)
Sponsoring Organization:
USDOE Assistant Secretary for Energy Efficiency and Renewable Energy, Washington, DC (United States)
DOE Contract Number:
FC36-95GO10059
OSTI ID:
631160
Report Number(s):
DOE/GO/10059-T1; ON: DE98003991; TRN: AHC29813%%31
Resource Relation:
Other Information: PBD: Jul 1997
Country of Publication:
United States
Language:
English