skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Experimental investigations in particle physics at intermediate energies

Technical Report ·
DOI:https://doi.org/10.2172/6138638· OSTI ID:6138638

The major elements of this project continues to be on fundamental symmetries and parameters of the Standard Model. The projects in the current period have been BNL E791 (a search for the decay K{sub L}{sup 0} {yields} {mu}e, which would violate the rule of separate lepton number conservation), test of an upgrade proposal (E871), and LSND, a neutrino experiment at LAMPF. For E791, data taking was completed in June 1990, and preliminary results are now available for the decays K{sub L}{sup 0} {yields} {mu}e and K{sub L}{sup 0} {yields} {mu}{mu}from the entire data set. The data for decay K{sub L}{sup 0} {yields} ee are still being analysed. These are an upper limit for the branching fraction for K{sub L}{sup 0} {yields} {mu}e of 3.5 {times} 10{sup {minus}11} (90% C.L.). From the 1990 data alone, we have a new (preliminary) value of the branching fraction for K{sub L}{sup 0} {yields} {mu}{mu} of (6.96{plus minus}0. 4{plus minus}0.22) {times} 10{sup {minus}9}, with a sample of 349 events. Combining this with earlier data gives (6.96{plus minus}0.34) {times} 10{sup 9}, by far the most precise value. The limit on the decay K{sub L}{sup 0} {yields} {mu}e places a lower limit on the mass of a new particle mediating such decays of 85 TeV. The LSND (Large Scintillator Neutrino Detector), a search for neutrino oscillations at LAMPF, has been approved, and is now underway. Other neutrino work at Los Alamos, E764, has resulted in a final publication. This includes the best, measurement of {nu}-nuclear scattering, in {nu}{sub mu} {sup 12}C inclusive cross sections. The measurement of the cross section for the exclusive reaction {nu}{sup mu}{sup 12}C {yields} {mu}{sup {minus}12} N is unique. In a new development, Dr. Martoff has established a facility for fabrication of superconducting detectors of nuclear radiation; the equipment has been funded and is partly installed. Planned uses include scattering for Dark Matter.' In summary, the objectives for this year have been met.

Research Organization:
Temple Univ., Philadelphia, PA (United States). Dept. of Physics
Sponsoring Organization:
USDOE; USDOE, Washington, DC (United States)
DOE Contract Number:
FG02-88ER40389
OSTI ID:
6138638
Report Number(s):
DOE/ER/40389-71; ON: DE92005081
Country of Publication:
United States
Language:
English