skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fundamental sputtering studies: Nonresonant ionization of sputtered neutrals

Technical Report ·
DOI:https://doi.org/10.2172/6100568· OSTI ID:6100568
; ; ;  [1];  [2]
  1. Argonne National Lab., IL (United States)
  2. Pittsburgh Univ., PA (United States). Dept. of Chemistry

Because of the practical importance of sputtering, numerous theories and computer simulations are used for predicting many aspects of the sputtering process. Unfortunately, many of the calculated sputtering results are untested by experiment. Until recently, most sputtering experiments required either very high ion fluences or the detection of only minor constituents of the sputtered flux, i.e., ions. These techniques may miss the subtleties involved in the sputtering process. High-detection-efficiency mass spectrometry, coupled with the laser ionization of neutral atoms, allows the detection of the major sputtered species with very low incident ion fluences. The depth-of-origin of sputtered atoms is one example of an important but poorly understood aspect of the sputtering process. By following the sputtering yield of a substrate atom with various coverages of an adsorbed overlayer, the depth of origin of sputtered atoms has been determined. Our results indicate that two-thirds of the sputtered flux originates in the topmost atomic layer. The ion-dose dependence of sputtering yields has long been assumed to be quite minor for low- to-moderate primary ion fluences. We have observed a two-fold decrease in the sputtering yield of the Ru(0001) surface for very low primary ion fluences. Data analysis results in a cross section for damage of 2.7 {plus minus} 1.0 {times} 10{sup {minus}15}cm{sup 2}. 40 refs., 3 figs., 2 tabs.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
USDOE; USDOE, Washington, DC (United States)
DOE Contract Number:
W-31109-ENG-38
OSTI ID:
6100568
Report Number(s):
ANL/PP-65910; ON: DE92003546
Country of Publication:
United States
Language:
English