skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development of advanced NO sub x control concepts for coal-fired utility boilers

Technical Report ·
DOI:https://doi.org/10.2172/5876931· OSTI ID:5876931

Hybrid technologies for reduction of NO{sub x} emissions from coal fired utility boilers may offer greater levels of NO{sub x} control than the sum of the individual technologies, leading to more cost effective emissions control strategies. CombiNO{sub x} is an integration of modified reburning, promoted selective non-catalytic reduction (SNCR) and methanol injection to reduce NO{sub x} emissions from coal fired flue gas. The first two steps, modified reburning and promoted SNCR are linked. It was shown previously that oxidation of CO in the presence of a SNCR agent enhances the NO reduction performance. Less reburning than is typically done is required to generate the optimum amount of CO to promote the SNCR agent. If the reburn fuel is natural gas this may result in a significant cost savings over typical reburning. Injection of methanol into the flue gas has been shown at laboratory scale to convert NO to NO{sub 2} which may subsequently be removed in a wet scrubber. The overall objective of this program is to demonstrate the effectiveness of the CombiNOx process at a large enough scale and over a sufficiently broad range of conditions to provide all of the information needed to conduct a full-scale demonstration in a coal fired utility boiler. The specific technical goals of this program are: 70% NO{sub x} reduction at 20% of the cost of selective catalytic reduction; NO{sub x} levels at the stack of 60 ppm for ozone non-attainment areas; demonstrate coal reburning; identify all undesirable by-products of the process and their controlling parameters; demonstrate 95% NO{sub 2} removal in a wet scrubber. During this reporting period, experimental work was initiated at both the laboratory and pilot scale in the Fundamental Studies phase of the program. The laboratory scale work focused on determining whether or not the NO{sub 2} formed by the methanol injection step can be removed in an SO{sub 2} scrubber.

Research Organization:
Energy and Environmental Research Corp., Irvine, CA (United States)
Sponsoring Organization:
USDOE; USDOE, Washington, DC (United States)
DOE Contract Number:
AC22-90PC90363
OSTI ID:
5876931
Report Number(s):
DOE/PC/90363-T1; ON: DE92008187
Country of Publication:
United States
Language:
English