skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thin film synthesis using miniature pulsed metal vapor vacuum arc plasma guns

Conference ·
OSTI ID:5846541

Metallic coatings can be fabricated using the intense plasma generated by the metal vapor vacuum arc. We have made and tested an embodiment of vacuum arc plasma source that operates in a pulsed mode, thereby acquiring precise control over the plasma flux and so also over the deposition rate, and that is in the form of a miniature plasma gun, thereby allowing deposition of metallic thin films to be carried out in confined spaces and also allowing a number of such guns to be clustered together. The plasma is created at the cathode spots on the metallic cathode surface, and is highly ionized and of directed energy a few tens of electron volts. Adhesion of the film to the substrate is thus good. Virtually all of the solid metals of the Periodic Table can be used, including highly refractory metals like tantalum and tungsten. Films, including multilayer thin films, can be fabricated of thickness from Angstroms to microns. We have carried out preliminary experiments using several different versions of miniature, pulsed, metal vapor vacuum arc plasma guns to fabricate metallic thin films and multilayers. Here we describe the plasma guns and their operation in this application, and present examples of some of the thin film structures we have fabricated, including yttrium and platinum films of thicknesses from a few hundred Angstroms up to 1 micron and an yttrium-cobalt multilayer structure of layer thickness about 100 Angstroms. 33 refs., 5 figs.

Research Organization:
Lawrence Berkeley Lab., CA (USA)
Sponsoring Organization:
USDOE; USDOE, Washington, DC (USA)
DOE Contract Number:
AC03-76SF00098
OSTI ID:
5846541
Report Number(s):
LBL-30482; CONF-900466-100; ON: DE91012359
Resource Relation:
Conference: Spring meeting of the Materials Research Society (MRS), San Francisco, CA (USA), 16-21 Apr 1990
Country of Publication:
United States
Language:
English