skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The underground electromagnetic pulse: Four representative models

Technical Report ·
DOI:https://doi.org/10.2172/5829556· OSTI ID:5829556

I describe four phenomenological models by which an underground nuclear explosion may generate electromagnetic pulses: Compton current asymmetry (or ''Compton dipole''); Uphole conductor currents (or ''casing currents''); Diamagnetic cavity plasma (or ''magnetic bubble''); and Large-scale ground motion (or ''magneto-acoustic wave''). I outline the corresponding analytic exercises and summarize the principal results of the computations. I used a 10-kt contained explosion as the fiducial case. Each analytic sequence developed an equivalent source dipole and calculated signal waveforms at representative ground-surface locations. As a comparative summary, the Compton dipole generates a peak source current moment of about 12,000 A/center dot/m in the submicrosecond time domain. The casing-current source model obtains an equivalent peak moment of about 2 /times/ 10/sup 5/ A/center dot/m in the 10- to 30-/mu/s domain. The magnetic bubble produces a magnetic dipole moment of about 7 /times/ 10/sup 6/ A/center dot/m/sup 2/, characterized by a 30-ms time structure. Finally, the magneto-acoustic wave corresponds to a magnetic dipole moment of about 600 A/center dot/m/sup 2/, with a waveform showing 0.5-s periodicities. 8 refs., 35 figs., 7 tabs.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
5829556
Report Number(s):
UCID-21720; ON: DE89013976
Resource Relation:
Other Information: Portions of this document are illegible in microfiche products
Country of Publication:
United States
Language:
English