skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Atmospheric discharges from nuclear facilities during decommissioning: German experiences

Conference ·
OSTI ID:567203

In Germany, a substantial amount of experience is available with planning, licensing and realization of decommissioning projects. In total, a number of 18 nuclear power plants including prototype facilities as well as 6 research reactors and 3 fuel cycle facilities have been shut down finally and are at different stages of decommissioning. Only recently the final {open_quotes}green field{close_quotes} stage of the Niederaichbach Nuclear Power Plant total dismantlement project has been achieved. From the regulatory point of view, a survey of the decommissioning experience in Germany is presented highlighting the aspects of production and retention of airborne radioactivity. Nuclear air cleaning technology, discharge limits prescribed in licences and actual discharges are presented. As compared to operation, the composition of the discharged radioactivity is different as well as the off-gas discharge rate. In practically all cases, there is no significant amount of short-lived radionuclides. The discussion further includes lessons learned, for example inadvertent discharges of radionuclides expected not to be in the plants inventory. It is demonstrated that, as for operation of nuclear power plants, the limits prescribed in the Ordinance on Radiological Protection can be met using existing air cleaning technology, Optimization of protection results in public exposures substantially below the limits. In the frame of the regulatory investigation programme a study has been conducted to assess the airborne radioactivity created during certain decommissioning activities like decontamination, segmentation and handling of contaminated or activated parts. The essential results of this study are presented, which are supposed to support planning for decommissioning, for LWRs, Co-60 and Cs-137 are expected to be the dominant radionuclides in airborne discharges. 18 refs., 2 figs., 1 tab.

Research Organization:
Harvard Univ., Boston, MA (United States). Harvard Air Cleaning Lab.; USDOE Assistant Secretary for Environment, Safety, and Health, Washington, DC (United States). Office of Environmental Guidance; US Nuclear Regulatory Commission (NRC), Washington, DC (United States). Office of Nuclear Regulatory Research; International Society of Nuclear Air Treatment Technologies, Inc., Batavia, OH (United States)
OSTI ID:
567203
Report Number(s):
NUREG/CP-0153; CONF-960715-; ON: TI97008959; TRN: 98:003293
Resource Relation:
Conference: 24. nuclear air cleaning and treatment conference, Portland, OR (United States), 15-18 Jul 1996; Other Information: PBD: Aug 1997; Related Information: Is Part Of Proceedings of the 24. DOE/NRC nuclear air cleaning and treatment conference; First, M.W. [ed.] [Harvard Univ., Boston, MA (United States). Harvard Air Cleaning Lab.]; PB: 1022 p.
Country of Publication:
United States
Language:
English