skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Photoelectronic properties of zinc phosphide crystals, films, and heterojunctions. Quarterly progress report No. 11, October 1-December 31, 1981

Technical Report ·
DOI:https://doi.org/10.2172/5664191· OSTI ID:5664191

Variations in crystal growth techniques are continuing with the goal of: (1) improving single crystal quality; and (2) producing variations in crystal properties by doping and post-growth variations of stoichiometry. DLTS measurements using Mg/Zn/sub 3/P/sub 2/ Schottky diodes gave information on three deep levels between 0.55 and 0.66 eV above the valence band in sublimation grown crystals with densities in the 10/sup 15/ to 10/sup 16/ cm/sup -3/ range, and a shallower level at 0.12 eV with a density of 10/sup 15/ cm/sup -3/ in an iodine-transport grown crystal. Investigation of surface properties of Zn/sub 3/P/sub 2/ indicate that a Br-MeOH etch leaves a Zn-rich surface for both sublimation-grown and iodine-transport grown crystals. Detailed measurements were made on thick Mg/Zn/sub 3/P/sub 2/ junctions on sublimation-grown and iodine-transport grown crystals of log J-V characteristics as a function of temperature, for crystal substrates as etched, and after heat treatment in hydrogen at several temperatures. A systematic change in the junction transport mechanism from tunneling at heat-treatment temperatures less than 300/sup 0/C to recombination/generation for heat-treatment temperatures between 300 and 500/sup 0/C was found for Zn/sub 3/P/sub 2/ crystals grown by both growth techniques. A simple model involving a depletion of free carrier density near the surface as a result of heat treatment in hydrogen is proposed. Thin film Mg/Zn/sub 3/P/sub 2/ cells showed log J-V characteristics that are strongly light dependent, indicating an increase in tunneling with illumination. Evidence that the barrier height of the Mg/Zn/sub 3/P/sub 2/ junction is actually of the order of 0.9 to 1.0 eV was obtained. Attempts to prepare ITO/Zn/sub 3/P/sub 2/ junctions by electron-beam evaporation of ITO on single crystal substrates yielded poor diodes and negligible photovoltaic behavior.

Research Organization:
Solar Energy Research Inst. (SERI), Golden, CO (United States); Stanford Univ., CA (USA). Dept. of Materials Science and Engineering
DOE Contract Number:
AC02-77CH00178
OSTI ID:
5664191
Report Number(s):
SERI/PR-1202-1-T3; ON: DE82011140
Country of Publication:
United States
Language:
English