skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Economic impact of an improved methanol catalyst. [Forecasting to 2000]

Technical Report ·
DOI:https://doi.org/10.2172/5632844· OSTI ID:5632844

The economic future of methanol is reviewed in light of its potential uses as a substitute for traditional hydrocarbon fuels and feedstocks as well as some evolving new uses. Methanol's future market position will depend strongly on its production cost in comparison with competitive products. One promising way to reduce the production cost is by use of an improved catalyst in the process by which methanol is obtained from the feedstock - which can be either natural gas or a similar product such as synthesis gas from coal gasification. To estimate the potential cost savings with an improved catalyst, we have based our analysis on a recent study which assumed use of synthesis gas from underground coal gasification as a feedstock for making methanol. The improved catalyst we studied was an actinide oxide whose features include high tolerance to sulfur and heat, and a yield of about 4 mol% methanol per pass with a 2/1 mixture of H/sub 2//CO. We calculated the effect of this catalyst on methanol production costs in a 12,000-bbl/day plant. The result was a saving of from 1 cent to 2.5 cent per gallon on the total methanol synthesis cost of 23 cents per gallon (i.e., a saving in the conversion process of 4.4% to 10.9%), excluding the cost of the raw feed gas. We conclude from this study that the improved catalyst could bring important savings in methanol production. The estimated savings range from 4.4% to 10.9% in the cost of methanol synthesis from the feedstock material. Another possibility for lowering methanol production costs in the future may lie in switching from a natural-gas-based feedstock to a coal-based feedstock - for example, using synthesis gas from underground coal gasification as the raw material. Our projections suggest that coal will eventually become a less expensive feedstock than natural gas.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
5632844
Report Number(s):
UCRL-53436; ON: DE84000736
Country of Publication:
United States
Language:
English