skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An application of neural networks to process and materials control

Conference ·
OSTI ID:5528167

Process control consists of two basic elements: a model of the process and knowledge of the desired control algorithm. In some cases the level of the control algorithm is merely supervisory, as in an alarm-reporting or anomaly-detection system. If the model of the process is known, then a set of equations may often be solved explicitly to provide the control algorithm. Otherwise, the model has to be discovered through empirical studies. Neural networks have properties that make them useful in this application. They can learn (make internal models from experience or observations). The problem of anomaly detection in materials control systems fits well into this general control framework. To successfully model a process with a neutral network, a good set of observables must be chosen. These observables must in some sense adequately span the space of representable events, so that a signature metric can be built for normal operation. In this way, a non-normal event, one that does not fit within the signature, can be detected. In this paper, we discuss the issues involved in applying a neural network model to anomaly detection in materials control systems. These issues include data selection and representation, network architecture, prediction of events, the use of simulated data, and software tools. 10 refs., 4 figs., 1 tab.

Research Organization:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Organization:
USDOE; USDOE, Washington, DC (United States)
DOE Contract Number:
W-7405-ENG-36
OSTI ID:
5528167
Report Number(s):
LA-UR-91-2386; CONF-910774-62; ON: DE91016016
Resource Relation:
Conference: 32. Institute of Nuclear Materials Management (INMM) annual meeting, New Orleans, LA (United States), 28-31 Jul 1991
Country of Publication:
United States
Language:
English