skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: New schemes in the adjustment of bendable, elliptical mirrors using a long trace profiler

Conference ·
OSTI ID:552767
 [1]; ; ;  [2]
  1. Pohang Light Source/POSTECH (Korea, Republic of). Beamline Division
  2. Lawrence Berkeley National Lab., CA (United States)

The Long Trace Profiler (LTP), an instrument for measuring the slope profile of long X-ray mirrors, has been used for adjusting bendable mirrors. Often an elliptical profile is desired for the mirror surface, since many synchrotron applications involve imaging a point source to a point image. Several techniques have been used in the past for adjusting the profile measured in height or slope of a bendable mirror. Underwood et al. have used collimated X-rays for achieving desired surface shape for bent glass optics. Non linear curve fitting using the simplex algorithm was later used to determine the best fit ellipse to the surface under test. A more recent method uses a combination of least squares polynomial fitting to the measured slope function in order to enable rapid adjustment to the desired shape. The mirror has mechanical adjustments corresponding to the first and second order terms of the desired slope polynomial, which correspond to defocus and coma, respectively. The higher order terms are realized by shaping the width of the mirror to produce the optimal elliptical surface when bent. The difference between desired and measured surface slope profiles allows us to make methodical adjustments to the bendable mirror based on changes in the signs and magnitudes of the polynomial coefficients. This technique gives rapid convergence to the desired shape of the measured surface, even when we have no information about the bender, other than the desired shape of the optical surface. Nonlinear curve fitting can be used at the end of the process for fine adjustments, and to determine the over all best fit parameters of the surface. This technique could be generalized to other shapes such as toroids.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE Office of Energy Research, Washington, DC (United States)
DOE Contract Number:
AC03-76SF00098
OSTI ID:
552767
Report Number(s):
LBNL-40739; CONF-970706-; LSBL-405; ON: DE98050028; TRN: 98:008753
Resource Relation:
Conference: Annual meeting of the Society of Photo-Optical Instrumentation Engineers, San Diego, CA (United States), 27 Jul - 1 Aug 1997; Other Information: PBD: Aug 1997
Country of Publication:
United States
Language:
English