skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Radioisotope space power generator. Annual report, October 1978-September 1979

Technical Report ·
DOI:https://doi.org/10.2172/5462119· OSTI ID:5462119

The emphasis of the Isotec Technology Program shifted from development of a Galileo generator to study of a segmented selenide element and couple technology. The goal of the FY 79 program was to determine the feasibility of fabricating segmented selenide P and N elements which exploit the high thermoelectric efficiency of (Cu,Ag)/sub 2/Se and Gd/sub 2/Se/sub 3/ materials. A preliminary evaluation of segmented element efficiencies, material compatibilities, and fabrication abilities was used to select (Cu,Ag)/sub 2/Se/Fe(Bi,Sb)/sub 2/Te/sub 3/ for the P element and Gd/sub 2/Se/sub 3//PbTe for the N element. The iron barrier between the (Cu,Ag)/sub 2/Se and (Bi,Sb)/sub 2/Te/sub 3/ prevented degradation of thermoelectric properties from copper contamination of the (Bi,Sb)/sub 2/Te/sub 3/. Fabrication processes for both elements were developed. Gd/sub 2/Se/sub 3/ was friable and difficult to fabricate crack-free. It also exhibited a phase transition from cubic to orthorhombic, which increased its susceptibility to microcracking and reduced its thermoelectric efficiency. Life testing of an all-bonded couple with unsegmented (Cu,Ag)/sub 2/Se P-type and Gd/sub 2/Se/sub 3/ N-type elements was stopped after 3300 h in a nominal 830/sup 0/C/390/sup 0/C thermal gradient. The Gd/sub 2/Se/sub 3/ leg did not show any significant degradation during the test. Examination of the hot end of the P element showed the need for a less reactive hot cap material and an improved vapor supression system. Module testing of a 1-W (Bi,Sb)/sub 2/(Se,Te)/sub 3/ generator was performed for 5000 h with no degradation in power. High-temperature Thermid 600 adhesive curing cycles were examined, 75-mW module loading tests were performed, and diagnostic examination of RTG-2A and RTG-201 was completed.

Research Organization:
General Atomics, San Diego, CA (United States)
DOE Contract Number:
AT03-76SF70060
OSTI ID:
5462119
Report Number(s):
GA-A-16233; ON: DE84005675
Country of Publication:
United States
Language:
English