skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Computer simulation of underwater nuclear events

Technical Report ·
DOI:https://doi.org/10.2172/5275001· OSTI ID:5275001

This report describes the computer simulation of two underwater nuclear explosions, Operation Wigwam and a modern hypothetical explosion of greater yield. The computer simulations were done in spherical geometry with the LASNEX computer code. Comparison of the LASNEX calculation with Snay's analytical results and the Wigwam measurements shows that agreement in the shock pressure versus range in water is better than 5%. The results of the calculations are also consistent with the cube root scaling law for an underwater blast wave. The time constant of the wave front was determined from the wave profiles taken at several points. The LASNEX time-constant calculation and Snay's theoretical results agree to within 20%. A time-constant-versus-range relation empirically fitted by Snay is valid only within a limited range at low pressures, whereas a time-constant formula based on Sedov's similarity solution holds at very high pressures. This leaves the intermediate pressure range with neither an empirical nor a theoretical formula for the time constant. These one-dimensional simulations demonstrate applicability of the computer code to investigations of this nature, and justify the use of this technique for more complex two-dimensional problems, namely, surface effects on underwater nuclear explosions. 16 refs., 8 figs., 2 tabs.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
5275001
Report Number(s):
UCID-20697; ON: DE87000209
Resource Relation:
Other Information: Portions of this document are illegible in microfiche products. Original copy available until stock is exhausted
Country of Publication:
United States
Language:
English