skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Measurement of the longitudinal deuteron spin-structure function in deep-inelastic scattering

Abstract

Experiment E143 at SLAC performed deep-inelastic scattering measurements with polarized electrons incident on polarized protons and deuterons. The data for the beam energy of 29 GeV cover the kinematical range of x{sub Bj} > 0.03 and 1 < Q{sup 2} < 12 GeV{sup 2}. From these data, the spin-dependent structure functions g{sub 1} were determined. This dissertation describes the experiment and its analysis and discusses the results. The measured integral of g{sub 1}{sup d} over x from x = 0 to x = 1 is {Gamma}{sub 1}{sup d} = 0.046 {+-} 0.003 (stat){+-}0.004 (syst) at Q{sup 2} = 3 GeV{sup 2} and disagrees by more than three standard deviations with the prediction of the Ellis-Jaffe, sum rule. The data suggest that the quark contribution to the nucleon helicity is 0.35 {+-} 0.05. From the proton data of the same experiment, the integral over the proton spin-structure functional g{sub 1}{sup d} was determined to be {Gamma}{sub 1}{sup p} = 0.127 {+-} 0.003(stat){+-}0.008(syst). By Combining the deuteron data with the proton data, the integral {Gamma}{sub 1}{sup n} was extracted as {minus}0.027 {+-} 0.008 (stat){+-}0.010 (syst). The integral {Gamma}{sub 1}{sup p} {minus} {Gamma}{sub 1}{sup n} is 0.154{+-}0.010(stat) {+-}0.016 (syst) according to the E143more » analysis. This result agrees with the important Bjorken sum rule of 0.171 {+-} 0.009 at Q{sup 2} = 3 GeV{sup 2} within less than one standard deviation. Furthermore, results of a separate analysis involving GLAP evolution equations are shown. Data were also collected for beam energies of 16.2 and 9.7 GeV, Results for g{sub 1} at these energies are presented.« less

Authors:
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Research, Washington, DC (United States)
OSTI Identifier:
486026
Report Number(s):
SLAC-R-492
ON: DE97006540; TRN: 97:011383
DOE Contract Number:  
AC03-76SF00515
Resource Type:
Technical Report
Resource Relation:
Other Information: PBD: Sep 1996
Country of Publication:
United States
Language:
English
Subject:
66 PHYSICS; ELECTRON-NEUTRON INTERACTIONS; DEEP INELASTIC SCATTERING; ELECTRON-PROTON INTERACTIONS; DEUTERONS; STRUCTURE FUNCTIONS; GEV RANGE 10-100; POLARIZED BEAMS; POLARIZED TARGETS

Citation Formats

Bauer, J M. Measurement of the longitudinal deuteron spin-structure function in deep-inelastic scattering. United States: N. p., 1996. Web. doi:10.2172/486026.
Bauer, J M. Measurement of the longitudinal deuteron spin-structure function in deep-inelastic scattering. United States. https://doi.org/10.2172/486026
Bauer, J M. 1996. "Measurement of the longitudinal deuteron spin-structure function in deep-inelastic scattering". United States. https://doi.org/10.2172/486026. https://www.osti.gov/servlets/purl/486026.
@article{osti_486026,
title = {Measurement of the longitudinal deuteron spin-structure function in deep-inelastic scattering},
author = {Bauer, J M},
abstractNote = {Experiment E143 at SLAC performed deep-inelastic scattering measurements with polarized electrons incident on polarized protons and deuterons. The data for the beam energy of 29 GeV cover the kinematical range of x{sub Bj} > 0.03 and 1 < Q{sup 2} < 12 GeV{sup 2}. From these data, the spin-dependent structure functions g{sub 1} were determined. This dissertation describes the experiment and its analysis and discusses the results. The measured integral of g{sub 1}{sup d} over x from x = 0 to x = 1 is {Gamma}{sub 1}{sup d} = 0.046 {+-} 0.003 (stat){+-}0.004 (syst) at Q{sup 2} = 3 GeV{sup 2} and disagrees by more than three standard deviations with the prediction of the Ellis-Jaffe, sum rule. The data suggest that the quark contribution to the nucleon helicity is 0.35 {+-} 0.05. From the proton data of the same experiment, the integral over the proton spin-structure functional g{sub 1}{sup d} was determined to be {Gamma}{sub 1}{sup p} = 0.127 {+-} 0.003(stat){+-}0.008(syst). By Combining the deuteron data with the proton data, the integral {Gamma}{sub 1}{sup n} was extracted as {minus}0.027 {+-} 0.008 (stat){+-}0.010 (syst). The integral {Gamma}{sub 1}{sup p} {minus} {Gamma}{sub 1}{sup n} is 0.154{+-}0.010(stat) {+-}0.016 (syst) according to the E143 analysis. This result agrees with the important Bjorken sum rule of 0.171 {+-} 0.009 at Q{sup 2} = 3 GeV{sup 2} within less than one standard deviation. Furthermore, results of a separate analysis involving GLAP evolution equations are shown. Data were also collected for beam energies of 16.2 and 9.7 GeV, Results for g{sub 1} at these energies are presented.},
doi = {10.2172/486026},
url = {https://www.osti.gov/biblio/486026}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Sun Sep 01 00:00:00 EDT 1996},
month = {Sun Sep 01 00:00:00 EDT 1996}
}