skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effects of ambient conditions and fuel composition on combustion stability

Technical Report ·
DOI:https://doi.org/10.2172/468492· OSTI ID:468492
; ;  [1];  [2]
  1. USDOE Federal Energy Technology Center, Morgantown, WV (United States)
  2. EG&G Technical Services of West Virginia (United States)

Recent regulations on NO, emissions are promoting the use of lean premix (LPM) combustion for industrial gas turbines. LPM combustors avoid locally stoichiometric combustion by premixing fuel and the air upstream of the reaction region, thereby eliminating the high temperatures that produce thermal NO.. Unfortunately, this style of combustor is prone to combustion oscillation. Significant pressure fluctuations can occur when variations in heat release periodically couple pressure to acoustic modes in the combustion chamber. These oscillations must be controlled because resulting vibration can shorten the life of engine hardware. Laboratory and engine field testing have shown that instability regimes can vary with environmental conditions. These observations prompted this study of the effects of ambient conditions and fuel composition on combustion stability. Tests are conducted on a sub-scale combustor burning natural gas, propane, and some hydrogen/hydrocarbon mixtures. A premix, swirl-stabilized fuel nozzle typical of industrial gas turbines is used. Experimental and numerical results describe how stability regions may shift as inlet air temperature, humidity, and fuel composition are altered. Results appear to indicate that shifting instability instability regimes are primarily caused by changes in reaction rate.

Research Organization:
USDOE Federal Energy Technology Center, Morgantown, WV (United States)
Sponsoring Organization:
USDOE Assistant Secretary for Fossil Energy, Washington, DC (United States)
OSTI ID:
468492
Report Number(s):
DOE/FETC/C-97/7283; CONF-970604-3; ON: DE97051999; NC: NONE
Resource Relation:
Conference: 42. international gas turbine and aeroengine congress and exhibition, Orlando, FL (United States), 2-5 Jun 1997; Other Information: PBD: 1997
Country of Publication:
United States
Language:
English