skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Techno-economical analysis of an integrated hydrogen generator - fuel cell system

Technical Report ·
DOI:https://doi.org/10.2172/460336· OSTI ID:460336

As well known, the most acknowledged process for generation of hydrogen for fuel cells is based upon the steam reforming of methane or natural gas (SRM). The reaction is endothermic ({Delta}H{sub 298}= 206 kJ/mole) and high H{sub 2}O/CH{sub 4} ratios are required in order to limit coke formation at T higher than 1000 K. Moreover, a common practice indicates that the process fuel economy is highly sensitive to proper heat fluxes, reactor design (tubular type) and to operational conditions. Efficient heat recovery can be accomplished only on large scale units (> 40,000 Nm{sup 3}/h), far from the range of interest for {open_quotes}on-site{close_quotes} fuel cells. Even if, to fit the needs of the fuel cell technology, medium sized external reforming units (50-200 Nm{sup 3} H{sub 2}/h) have been developed and/or planned for integration with both the first and the second generation fuel cells; amelioration in their heat recovery and efficiency is at the expense of an increased sophistication and therefore an higher per unit costs. In all cases, SRM requires an extra {open_quotes}fuel{close_quotes} supply (to substain the, endothermicity of the reaction) in addition to stoichiometric requirements ({open_quotes}feed{close_quotes} gas). An alternative would be the partial oxidation of methane, which is not energy intensive.

Research Organization:
Fuel Cell Seminar Organizing Committee (United States)
OSTI ID:
460336
Report Number(s):
CONF-961107-Absts.; ON: TI97001494; CNN: Contract JOU2-CT93-0290; TRN: 97:001723-0189
Resource Relation:
Conference: Fuel cell seminar, Kissimmee, FL (United States), 17-20 Nov 1996; Other Information: PBD: [1996]; Related Information: Is Part Of Fuel cells seminar; PB: 794 p.
Country of Publication:
United States
Language:
English