skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Methods for Predicting More Confident Lifetimes of Seals in Air Environments

Journal Article · · Rubber Chemistry and Technology
OSTI ID:4252

We have been working for many years to develop improved methods for predicting the lifetimes of polymers exposed to air environments and have recently turned our attention to seal materials. This paper describes an extensive study on a butyl material using elevated temperature compression stress-relaxation (CSR) techniques in combination with conventional oven aging exposures. The results initially indicated important synergistic effects when mechanical strain is combined with oven aging, as well as complex, non-Arrhenius behavior of the CSR results. By combining modeling and experiments, we show that diffusion-limited oxidation (DLO) anomalies dominate traditional CSR experiments. A new CSR approach allows us to eliminate DLO effects and recover Arrhenius behavior. Furthermore, the resulting CSR activation energy (E{sub a}) from 125 C to 70 C is identical to the activation energies for the tensile elongation and for the oxygen consumption rate of unstrained material over similar temperature ranges. This strongly suggests that the same underlying oxidation reactions determine both the unstrained and strained degradation rates. We therefore utilize our ultrasensitive oxygen consumption rate approach down to 23 C to show that the CSR E{sub a} likely remains unchanged when extrapolated below 70 C, allowing very confident room temperature lifetime predictions for the butyl seal.

Research Organization:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
AC04-94AL85000
OSTI ID:
4252
Report Number(s):
SAND99-0553J; TRN: AH200113%%124
Journal Information:
Rubber Chemistry and Technology, Other Information: Submitted to Rubber Chemistry and Technology; PBD: 5 Mar 1999
Country of Publication:
United States
Language:
English