skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Rotational effects on turbine blade cooling

Conference ·
OSTI ID:269459
; ;  [1]
  1. Massachusetts Institute of Technology, Cambridge, MA (United States)

An experimental investigation of the influence of rotation on the heat transfer in a smooth, rectangular passage rotating in the orthogonal mode is presented. The passage simulates one of the cooling channels found in gas turbine blades. A constant heat flux is imposed on the model with either inward or outward flow. The effects of rotation and buoyancy on the Nusselt number were quantified by systematically varying the Rotation number, Density Ratio, Reynolds number, and Buoyancy parameter. The experiment utilizes a high resolution infrared temperature measurement technique in order to measure the wall temperature distribution. The experimental results show that the rotational effects on the Nusselt number are significant and proper turbine blade design must take into account the effects of rotation, buoyancy, and flow direction. The behavior of the Nusselt number distribution depends strongly on the particular side, axial position, flow direction, and the specific range of the scaling parameters. The results show a strong coupling between buoyancy and Corollas effects throughout the passage. For outward flow, the trailing side Nusselt numbers increase with Rotation number relative to stationary values. On the leading side, the Nusselt numbers tended to decrease with rotation near the inlet and subsequently increased farther downstream in the passage. The Nusselt numbers on the side walls generally increased with rotation. For inward flow, the Nusselt numbers generally improved relative to stationary results, but increases in the Nusselt number were relatively smaller than in the case of outward flow. For outward and inward flows, increasing the density ratio generally tended to decrease Nusselt numbers on the leading and trailing sides, but the exact behavior and magnitude depended on the local axial position and specific range of Buoyancy parameters.

Research Organization:
USDOE Morgantown Energy Technology Center (METC), WV (United States); USDOE Assistant Secretary for Energy Efficiency and Renewable Energy, Washington, DC (United States). Office of Industrial Technologies
OSTI ID:
269459
Report Number(s):
DOE/METC-96/1023-Vol.2; CONF-9510109-Vol.2; ON: DE96000562; TRN: 96:002470-0010
Resource Relation:
Conference: Advanced turbine systems (ATS) annual review, Morgantown, WV (United States), 17-18 Oct 1995; Other Information: PBD: Oct 1995; Related Information: Is Part Of Proceedings of the Advanced Turbine Systems Annual Program Review meeting. Volume 2; PB: 412 p.
Country of Publication:
United States
Language:
English