skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Matrix-assisted laser-desorption-ionization mass spectrometry of proteins using a free-electron laser

Conference ·
OSTI ID:238873
;  [1];  [2]
  1. Institut fuer Medizinische Physik and Biophysik, Muenter (Germany)
  2. Vanderbilt Univ., Nashville, TN (United States)

Matrix-assisted laser desorption-ionization (MALDI) mass spectrometry (MS) is one of the most promising techniques for spectral fingerprinting large molecules, such as proteins, oligonucleotides and carbohydrates. In the usual implementation of this technique, the analyte molecule is dissolved in an aromatic liquid matrix material which resonantly absorbs ultraviolet laser light. Resonant absorption by {pi}-{pi}* transitions volatilizes the matrix and initiates subsequent charge transfer to the analyte molecules, which are detected by time-of-flight mass spectrometry. Recent MALDI-MS studies with Er:YAG (2.94 {mu}m) and CO{sub 2}{sup 4} (9.4-10.6 {mu}m) lasers suggest that them is significant unexplored potential for mass spectrometry of macromolecules, including oligonucleotide, in the mid-infrared. Preliminary experiments show that it is possible to capitalize on the rich rovibronic absorption spectrum of virtually all organics to initiate resonant desorption in matrix material over the entire range of pH values. However, the mechanism of charge transfer is particularly problematic for infrared MALDI because of the low photon energy. In this paper, we report the results of MALI-MS studies on small proteins using the Vanderbilt FEL and several matrix materials. Proteins with masses up to roughly 6,000 amu were detected with high resolution in a linear time-of-flight mass spectrometer. By varying the pulse duration using a broadband Pockels cell, we have been able to compare the results of relatively long (5 {mu}s) and short (0.1 {mu}s) irradiation on the desorption and ionization processes. Compared to uv-MALDI spectra of identical analytes obtained with a nitrogen laser (337 nm) in the same time-of-flight spectrometer, the infrared results appear to show that the desorption and ionization process goes on over a somewhat longer time scale.

Research Organization:
Brookhaven National Lab. (BNL), Upton, NY (United States)
OSTI ID:
238873
Report Number(s):
BNL-61982-Absts.; CONF-9508156-Absts.; ON: DE96002729; CNN: Contract N00014-94-C-0109; TRN: 96:013365
Resource Relation:
Conference: 17. international free electron laser conference, New York, NY (United States), 21-25 Aug 1995; Other Information: PBD: [1995]; Related Information: Is Part Of 17th international free electron laser conference and 2nd international FEL users` workshop. Program and abstracts; PB: 300 p.
Country of Publication:
United States
Language:
English