skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An FEL design for gamma-gamma colliders based on chirped pulse amplification techniques

Conference ·
OSTI ID:238791
; ;  [1]
  1. Lawrence Berkeley Lab., CA (United States)

A next generation e{sup +}-e{sup -} linear collider in the TeV range can be converted into a {gamma}-{gamma} collider by converting it to e{sup -}-e{sup -} operation and then generating {gamma}-rays via Compton backscattering with optical beams. This provides unique access to some areas of fundamental physics as well as highly desirable redundancy to the collisions. The required optical beam (with a wavelength of about 1 micron) must have very high peak power, (about 1 TW) as well as average power (about 10 kW). To achieve a 1 : 1 conversion from an electron to {gamma}-quantum, each micropulse must contain about one Joule and must be about one picosecond long, the micropulse peak power being about one Terawatt. To match the electron beam pulse structure, a macropulse consists of a sequence of about one hundred micropulses separated by about one nanosecond, and the macropulses am repeated at a rate of about 100 Hz. Thus, the time average power is about 10 kW propose and analyze a promising scheme to produce the required optical beam based on the chirped pulse amplification technique. In this scheme, a low power optical beam of the same time structure required for the {gamma}-{gamma} collider is passed through a grating pair to stretch and chirp the picosecond micropulses to about one nanosecond, so that each macropulse will be an almost continuous, 100 nanosecond long pulse, but with chirps (from red to blue) within each nanosecond. The optical beam is then amplified in an FEL, driven by an intense electron beam from an induction linac. The amplified beam is then passed through another grating pair to compress the micropulses, thus recovering the original time structure, but containing about one Joule per micropulse. The requirements for electron beams, about 100 MeV energy, 1 kA current, 50 mm-mrad rms emittance, 10{sup -3} energy spread, are consistent with the state-of-the-art induction linac technology.

Research Organization:
Brookhaven National Lab. (BNL), Upton, NY (United States)
DOE Contract Number:
AC03-76SF00098
OSTI ID:
238791
Report Number(s):
BNL-61982-Absts.; CONF-9508156-Absts.; ON: DE96002729; TRN: 96:013280
Resource Relation:
Conference: 17. international free electron laser conference, New York, NY (United States), 21-25 Aug 1995; Other Information: PBD: [1995]; Related Information: Is Part Of 17th international free electron laser conference and 2nd international FEL users` workshop. Program and abstracts; PB: 300 p.
Country of Publication:
United States
Language:
English