skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Debris-free laser plasma sources for EUVL based on gas jets

Conference ·
OSTI ID:224442

EUV sources for EUVL must not only be bright for throughput, they must also be debris-free to increase condenser longevity. Many schemes to achieve bright, clean sources for EUVL have been studied, including mass-limited targets, cryogenic targets, electric discharges, and electron-beam pumped vapor. Several of these sources show promise, with varying degrees of brightness, debris reduction, and system complexity. We have studied pulsed gas jets, which we find to be relatively simple, debris-free sources when used under appropriate conditions. Under transverse, 1.06 {mu}m irradiation of the jet at incident laser intensities in the range of 10{sup 11}-10{sup 12} Watts/cm{sup 2}, the conversion efficiency into 2{pi} steradians is in the range of 0.3-0.4%, or approximately half the value exhibited by solid Au or W targets under similar conditions. Source sizes in the range of 350 {mu}m x 400 {mu}m can be achieved, as shown in Fig. 2, depending sensitively on both laser and gas jet parameters. One issue that must be overcome in the use of gas jet targets is the requirement that the laser-irradiated plasma be located as far from the jet nozzle as possible to avoid debris generation while maintaining adequate EUV conversion. We will describe conditions under which these criteria are met. Measurements of the reflectance lifetimes of multilayer-coated mirrors placed near the plasma source under these conditions will also be presented. The potential for scaling such sources up to meet the requirements of a commercial EUVL system will be discussed.

Research Organization:
Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC04-94AL85000
OSTI ID:
224442
Report Number(s):
SAND-96-8482C; CONF-960590-2; ON: DE96006813; TRN: 96:002702
Resource Relation:
Conference: Optical Society of America (OSA) topical meeting on extreme ultraviolet lithography, Boston, MA (United States), 1-3 May 1996; Other Information: PBD: 1996
Country of Publication:
United States
Language:
English