skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Convergence estimates for iterative methods via the Kriess Matrix Theorem on a general complex domain

Conference ·
OSTI ID:223849
;  [1]
  1. Cornell Univ., Ithaca, NY (United States)

What properties of a nonsymmetric matrix A determine the convergence rate of iterations such as GMRES, QMR, and Arnoldi? If A is far from normal, should one replace the usual Ritz values {r_arrow} eigenvalues notion of convergence of Arnoldi by alternative notions such as Arnoldi lemniscates {r_arrow} pseudospectra? Since Krylov subspace iterations can be interpreted as minimization processes involving polynomials of matrices, the answers to questions such as these depend upon mathematical problems of the following kind. Given a polynomial p(z), how can one bound the norm of p(A) in terms of (1) the size of p(z) on various sets in the complex plane, and (2) the locations of the spectrum and pseudospectra of A? This talk reports some progress towards solving these problems. In particular, the authors present theorems that generalize the Kreiss matrix theorem from the unit disk (for the monomial A{sup n}) to a class of general complex domains (for polynomials p(A)).

Research Organization:
Front Range Scientific Computations, Inc., Boulder, CO (United States); US Department of Energy (USDOE), Washington DC (United States); National Science Foundation, Washington, DC (United States)
OSTI ID:
223849
Report Number(s):
CONF-9404305-Vol.1; ON: DE96005735; TRN: 96:002320-0023
Resource Relation:
Conference: Colorado conference on iterative methods, Breckenridge, CO (United States), 5-9 Apr 1994; Other Information: PBD: [1994]; Related Information: Is Part Of Colorado Conference on iterative methods. Volume 1; PB: 203 p.
Country of Publication:
United States
Language:
English