skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A multilevel approximate projections for incompressible flow calculations

Conference ·
OSTI ID:219605
 [1]
  1. Lawrence Livermore National Lab., CA (United States)

An adaptive-mesh projection algorithm for unsteady, variable-density, incompressible flow at high Reynolds number has been developed in the Applied Mathematics Group at LLNL. A grid-based refinement scheme combines the theoretical efficiencies of adaptive methods with the computational advantages of uniform grids, while a second-order Godunov method provides a robust and accurate treatment of advection in the presence of discontinuities without excessive dissipation. This paper focuses on the work of the present author concerning the approximate projection itself, which involves the numerical inversion of the operator {del} {center_dot} (1/{rho}){del} on various subsets of the adaptive grid hierarchy.

Research Organization:
Front Range Scientific Computations, Inc., Boulder, CO (United States); US Department of Energy (USDOE), Washington DC (United States); National Science Foundation, Washington, DC (United States)
OSTI ID:
219605
Report Number(s):
CONF-9404305-Vol.2; ON: DE96005736; TRN: 96:002321-0053
Resource Relation:
Conference: Colorado conference on iterative methods, Breckenridge, CO (United States), 5-9 Apr 1994; Other Information: PBD: [1994]; Related Information: Is Part Of Colorado Conference on iterative methods. Volume 2; PB: 261 p.
Country of Publication:
United States
Language:
English