skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Radiation effects in the stainless steel primary coolant supply adapter

Technical Report ·
DOI:https://doi.org/10.2172/219247· OSTI ID:219247

The primary coolant supply adapter (PCSA) is a flanged, cylindrical collar of 316NG stainless steel that is part of the primary pressure boundary of the Advanced Neutron Source. The radiation fluxes on the PCSA are dominated by thermal neutrons. During its intended 40-year service life, the PCSA will receive a thermal neutron fluence of 1.8 {times} 10{sup 26} m{sup {minus}2} in its upper sections at a temperature of <1OO{degree}C. The PCSA will suffer radiation damage, caused primarily by the interaction of thermal neutrons with the 14% nickel in the steel, which will generate helium by the sequential reactions {sup 58}Ni (n,y){sup 59}Ni (n,{alpha}){sup 56}Fe and will concurrently produce significant atomic displacements per atom (dpa) from the {sup 59}Ni (n,{alpha}){sup 56}Fe recoils. It is estimated that the helium concentration and total atomic displacements in the upper parts of the PCSA will be about 430 atomic parts per million and 1 dpa, respectively. From newly compiled trend curves of tensile properties and fracture toughness data versus atomic displacements for 316 steel, it is deduced that the irradiated PCSA will retain at least 20% uniform tensile elongation and a fracture toughness of more than 200 Mpa{radical}m, which are judged adequate to resist brittle failure. Tberefore, employment of a neutron shield around the PCSA is unnecessary.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC05-84OR21400
OSTI ID:
219247
Report Number(s):
ORNL/TM-13064; ON: DE96006672; TRN: 96:012723
Resource Relation:
Other Information: PBD: Sep 1995
Country of Publication:
United States
Language:
English